Automatic data structure selection and transformation for sparse matrix computations

被引:22
|
作者
Bik, AJC
Wijshoff, HAG
机构
[1] High Performance Computing Division, Dept. of Computer Science, Leiden University
关键词
data structure selection; data structure transformations; restructuring compilers; sparse matrix computations; program transformations; LINEAR ALGEBRA SUBPROGRAMS;
D O I
10.1109/71.485501
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of compiler optimization of sparse codes is well known and no satisfactory solutions have been found yet. One of the major obstacles is formed by the fact that sparse programs explicitly deal with particular data structures selected for storing sparse matrices. This explicit data structure handling obscures the functionality of a code to such a degree that optimization of the code is prohibited, for instance, by the introduction of indirect addressing. The method presented in this paper delays data structure selection until the compile phase, thereby allowing the compiler to combine code optimization with explicit data structure selection. This method enables the compiler to generate efficient code for sparse computations. Moreover, the task of the programmer is greatly reduced in complexity.
引用
收藏
页码:109 / 126
页数:18
相关论文
共 50 条
  • [31] A MATLAB-based code generator for sparse matrix computations
    Kawabata, H
    Suzuki, M
    Kitamura, T
    PROGRAMMING LANGUAGES AND SYSTEMS, PROCEEDINGS, 2004, 3302 : 280 - 295
  • [32] On efficient sparse integer matrix Smith normal form computations
    Dumas, JG
    Saunders, BD
    Villard, G
    JOURNAL OF SYMBOLIC COMPUTATION, 2001, 32 (1-2) : 71 - 99
  • [33] Sparse matrix computations with application to solve system of nonlinear equations
    Hossain, Shahadat
    Steihaug, Trond
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05) : 372 - 386
  • [34] Automatic Protein Structure Determination from Sparse NMR Spectroscopy Data
    MacCallum, Justin L.
    Tang, Yuefeng
    Huang, Y. Janet
    Montelione, Gaetano T.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 153A - 153A
  • [35] Segmented Merge: A New Primitive for Parallel Sparse Matrix Computations
    Ji, Haonan
    Lu, Shibo
    Hou, Kaixi
    Wang, Hao
    Jin, Zhou
    Liu, Weifeng
    Vinter, Brian
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2021, 49 (05) : 732 - 744
  • [36] Nonuniform Memory Affinity Strategy in Multithreaded Sparse Matrix Computations
    Srinivasa, Avinash
    Sosonkina, Masha
    HIGH PERFORMANCE COMPUTING SYMPOSIUM 2012 (HPC 2012), 2012, 44 (06): : 18 - 25
  • [37] A Monte Carlo Approach to Sparse Approximate Inverse Matrix Computations
    Strassburg, J.
    Alexandrov, N.
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2307 - 2316
  • [38] A sparse parallel hybrid Monte Carlo algorithm for matrix computations
    Branford, S
    Weihrauch, C
    Alexandrov, V
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 743 - 751
  • [39] Effects of ordering strategies and programming paradigms on sparse matrix computations
    Oliker, L
    Li, XY
    Husbands, P
    Biswas, R
    SIAM REVIEW, 2002, 44 (03) : 373 - 393
  • [40] ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in ML
    Dangi, Pranav
    Bai, Zhenyu
    Juneja, Rohan
    Wijerathne, Dhananjaya
    Mitra, Tulika
    PROCEEDINGS OF THE 2024 THE INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, PACT 2024, 2024, : 246 - 257