Quantum electromechanics of a hypersonic crystal

被引:35
|
作者
Kalaee, Mahmoud [1 ,2 ,3 ]
Mirhosseini, Mohammad [1 ,2 ,3 ]
Dieterle, Paul B. [1 ,2 ,3 ]
Peruzzo, Matilda [4 ]
Fink, Johannes M. [3 ,4 ]
Painter, Oskar [1 ,2 ,3 ]
机构
[1] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[2] CALTECH, Thomas J Watson Sr Lab Appl Phys, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] IST Austria, Klosterneuburg, Austria
关键词
MICROWAVE; MOTION; PHONONS; STATE;
D O I
10.1038/s41565-019-0377-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information.
引用
收藏
页码:334 / +
页数:7
相关论文
共 50 条
  • [41] Electromechanics and electrobiology: what is in common?
    Gandilyan, S.V.
    Gandilyan, V.V.
    Gandilyan, U.V.
    Elektrotekhnika, 1994, (02): : 64 - 67
  • [42] SIMILARITY THEORY IN ELECTROMECHANICS - A REVIEW
    ILINSKII, NF
    POPOV, MA
    ELECTRICAL TECHNOLOGY, 1988, (02): : 30 - 42
  • [43] Conductive Milieu on Cellular Electromechanics
    Hong, SoonGweon
    Kim, Albert
    Lee, Philip
    Lee, Luke P.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 211A - 211A
  • [44] Electromechanics of polarized cell growth
    Lipchinsky, Andrei
    BIOSYSTEMS, 2018, 173 : 114 - 132
  • [45] Electromechanics of fluidized beds of nanoparticles
    Espin, M. J.
    Valverde, J. M.
    Quintanilla, M. A. S.
    Castellanos, A.
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [46] Phonon-cavity electromechanics
    Mahboob, I.
    Nishiguchi, K.
    Okamoto, H.
    Yamaguchi, H.
    NATURE PHYSICS, 2012, 8 (05) : 387 - 392
  • [47] Electromechanics of solenoid electroribbon actuators
    Jia, Fei
    Fan, Shengjun
    Guo, Jianglong
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (11):
  • [48] More about the electromechanics of electrowetting
    Jones, T. B.
    MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (01) : 2 - 9
  • [49] Sub-terahertz electromechanics
    Xie, Jiacheng
    Shen, Mohan
    Xu, Yuntao
    Fu, Wei
    Yang, Likai
    Tang, Hong X.
    NATURE ELECTRONICS, 2023, 6 (04) : 301 - 306
  • [50] Computational methods for cardiac electromechanics
    Kerckhoffs, RCP
    Healy, SN
    Usyk, TP
    McCulloch, AD
    PROCEEDINGS OF THE IEEE, 2006, 94 (04) : 769 - 783