Quantum electromechanics of a hypersonic crystal

被引:35
|
作者
Kalaee, Mahmoud [1 ,2 ,3 ]
Mirhosseini, Mohammad [1 ,2 ,3 ]
Dieterle, Paul B. [1 ,2 ,3 ]
Peruzzo, Matilda [4 ]
Fink, Johannes M. [3 ,4 ]
Painter, Oskar [1 ,2 ,3 ]
机构
[1] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[2] CALTECH, Thomas J Watson Sr Lab Appl Phys, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] IST Austria, Klosterneuburg, Austria
关键词
MICROWAVE; MOTION; PHONONS; STATE;
D O I
10.1038/s41565-019-0377-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information.
引用
收藏
页码:334 / +
页数:7
相关论文
共 50 条
  • [1] Quantum electromechanics of a hypersonic crystal
    Mahmoud Kalaee
    Mohammad Mirhosseini
    Paul B. Dieterle
    Matilda Peruzzo
    Johannes M. Fink
    Oskar Painter
    Nature Nanotechnology, 2019, 14 : 334 - 339
  • [2] Quantum electromechanics with levitated nanoparticles
    Martinetz, Lukas
    Hornberger, Klaus
    Millen, James
    Kim, M. S.
    Stickler, Benjamin A.
    NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [3] Extractable work in quantum electromechanics
    Culhane, Oisin
    Mitchison, Mark T.
    Goold, John
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [4] Quantum electromechanics with levitated nanoparticles
    Lukas Martinetz
    Klaus Hornberger
    James Millen
    M. S. Kim
    Benjamin A. Stickler
    npj Quantum Information, 6
  • [5] Powering an autonomous clock with quantum electromechanics
    Culhane, Oisin
    Kewming, Michael J.
    Silva, Alessandro
    Goold, John
    Mitchison, Mark T.
    NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [6] Quantum electromechanics on silicon nitride nanomembranes
    Fink, J. M.
    Kalaee, M.
    Pitanti, A.
    Norte, R.
    Heinzle, L.
    Davanco, M.
    Srinivasan, K.
    Painter, O.
    NATURE COMMUNICATIONS, 2016, 7
  • [7] Quantum electromechanics on silicon nitride nanomembranes
    J. M. Fink
    M. Kalaee
    A. Pitanti
    R. Norte
    L. Heinzle
    M. Davanço
    K. Srinivasan
    O. Painter
    Nature Communications, 7
  • [8] Testing spontaneous wavefunction collapse with quantum electromechanics
    Tobar, Germain
    Forstner, Stefan
    Fedorov, Arkady
    Bowen, Warwick P.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)
  • [9] Quantum non-Gaussian optomechanics and electromechanics
    Rakhubovsky, Andrey A.
    Moore, Darren W.
    Filip, Radim
    PROGRESS IN QUANTUM ELECTRONICS, 2024, 93
  • [10] Quantum electromechanics: qubits from buckling nanobars
    Savel'ev, Sergey
    Hu, Xuedong
    Nori, Franco
    NEW JOURNAL OF PHYSICS, 2006, 8