Nonlocal perturbations of the fractional Choquard equation

被引:23
|
作者
Singh, Gurpreet [1 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
关键词
Choquard equation; fractional operator; nonlocal perturbation; groundstate solution; sign-changing solutions; EXISTENCE; DYNAMICS; GUIDE;
D O I
10.1515/anona-2017-0126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the equation (-Delta)(s)u + V(x)u = (I-a * vertical bar u vertical bar(p)) vertical bar u vertical bar(p-2) u+lambda(I-beta * vertical bar u vertical bar(q)) vertical bar u vertical bar(q-2) u in R-N, where I-gamma(x) = vertical bar x vertical bar(-gamma) for any y is an element of (0, N), p, q > 0, alpha, beta is an element of (0, N), N >= 3, and lambda is an element of R. First, the existence of ground- state solutions by using a minimization method on the associated Nehari manifold is obtained. Next, the existence of least energy sign-changing solutions is investigated by considering the Nehari nodal set.
引用
收藏
页码:694 / 706
页数:13
相关论文
共 50 条