Hydrogen Production via Oxidative Steam Reforming of Biodiesel By-products over Ni/CeO2-ZrO2/Al2O3 Catalyst

被引:0
|
作者
Kamonsuangkasem, Krongthong [1 ]
Therdthianwong, Supaporn [1 ]
Therdthianwong, Apichai [2 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Dept Chem Engn, Bangkok, Thailand
[2] King Mongkuts Univ Technol Thonburi, Fuel Cell & Hydrogen Res & Engn Ctr, Bangkok, Thailand
关键词
hydrogen production; glycerol; oxidative steam reforming; Ni/CeO2-ZrO2/Al2O3; GLYCEROL; ETHANOL;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Yellow glycerol and crude glycerol, by-products of biodiesel, are renewable resource that can be used for sustainable production of hydrogen. The oxidative steam reforming of biodiesel by-products over Ni/CeO2-ZrO2/Al2O3 catalyst were investigated and the effluents from reforming of both by-products were compared with that of pure glycerol. Preliminary analysis of yellow glycerol showed that there were methanol and fatty acid methyl esters in it whereas the presence of potassium (K) and sodium (Na) was observed in crude glycerol. The catalytic activity of Ni/CeO2-ZrO2/Al2O3 catalyst was studied isothermally under atmospheric pressure at water-to-glycerol and oxygen-to-glycerol molar ratio of 9:1 and 0.5:1, respectively. Under these conditions, the glycerol was reformed to H-2, CO2, CO and CH4 with small amount of C-2 gas products that were measured by gas chromatograph. The results showed that the yellow glycerol was completely converted in gas phase and provided hydrogen yield and selectivity at 71% and 72%, respectively, whereas crude glycerol was nearly completed to convert in gas phase and gave the lowest hydrogen yield and selectivity at 37% and 42%, respectively because of the presence of coke formation. Therefore, the potential to produce hydrogen gas with low price feedstock like yellow glycerol was highly recommended with respect to pure glycerol.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 50 条
  • [41] Hydrogen production by ethanol steam reforming over a commercial Pd/-γ-Al2O3 catalyst
    Goula, MA
    Kontou, SK
    Tsiakaras, PE
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 49 (02) : 135 - 144
  • [42] Hydrogen Production via Glycerol Steam Reforming over Ni/Al2O3: Influence of Nickel Precursors
    Wu, Gaowei
    Zhang, Chengxi
    Li, Shuirong
    Han, Zhiping
    Wang, Tuo
    Ma, Xinbin
    Gong, Jinlong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (08): : 1052 - 1062
  • [43] Hydrogen Production by Steam Reforming of Ethanol Over Mesoporous Ni-Al2O3-ZrO2 Catalysts
    Song, Ji Hwan
    Han, Seung Ju
    Song, In Kyu
    CATALYSIS SURVEYS FROM ASIA, 2017, 21 (03) : 114 - 129
  • [44] Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts
    Fajardo, HV
    Probst, LFD
    APPLIED CATALYSIS A-GENERAL, 2006, 306 : 134 - 141
  • [45] Study of Co/CeO2-γ-Al2O3 catalysts for steam and oxidative reforming of ethanol for hydrogen production
    Maia, Thaisa A.
    Assaf, Jose M.
    Assaf, Elisabete M.
    FUEL PROCESSING TECHNOLOGY, 2014, 128 : 134 - 145
  • [46] Ethanol Steam Reforming for Hydrogen Production over Bimetallic Pt–Ni/Al2O3
    Enis Örücü
    Feyza Gökaliler
    A. Erhan Aksoylu
    Z. Ilsen Önsan
    Catalysis Letters, 2008, 120 : 198 - 203
  • [47] Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst
    Park, Jung Eun
    Yim, Sun-Dae
    Kim, Chang Soo
    Park, Eun Duck
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (22) : 11517 - 11527
  • [48] Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst
    Siew, Kah Weng
    Lee, Hua Chyn
    Gimbun, Jolius
    Cheng, Chin Kui
    BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS, 2013, 8 (02): : 160 - 166
  • [49] Hydrogen production from catalytic steam reforming of bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts
    Yan, Chang-Feng
    Cheng, Fei-Fei
    Hu, Rong-Rong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (21) : 11693 - 11699
  • [50] Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3
    Hung, Chih-Cheng
    Chen, Shiny-Li
    Liao, Yi-Kai
    Chen, Chih-Hao
    Wang, Jeng-Han
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (06) : 4955 - 4966