On a class of hyperplanes of the symplectic and Hermitian dual polar spaces

被引:0
|
作者
De Bruyn, Bart [1 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
关键词
EMBEDDINGS; DW(2N-1; Q);
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Delta be a symplectic dual polar space DW (2n-1,K) or a Hermitian dual polar space DH (2n - 1, K,theta), n >= 2. We define a class of hyperplanes of Delta arising from its Grassmann-embedding and disuss several properties of these hyperplanes. The construction of these hyperplanes allows us to prove that there exists an avoid of the Hermitian dual polar space DH (2n-1, K, theta) arising from its Grassmann-embedding if and only if there exists and empty theta-Hermitian variety in PG(n-1, K). Using this result we are able to give the first examples of avoids in thick dual polar spaces of rank at least 3 which arise from some projective embedding. These are also the first examples of avoids in thick dual spaces of rank at least 3 for which the construction does not make use of transfinite recursion.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] ON TRANSITIVE OVOIDS OF FINITE HERMITIAN POLAR SPACES
    Feng, Tao
    Li, Weicong
    COMBINATORICA, 2021, 41 (05) : 645 - 667
  • [42] On Transitive Ovoids of Finite Hermitian Polar Spaces
    Tao Feng
    Weicong Li
    Combinatorica, 2021, 41 : 645 - 667
  • [43] CHARACTERIZATIONS OF FINITE CLASSICAL POLAR SPACES BY INTERSECTION NUMBERS WITH HYPERPLANES AND SPACES OF CODIMENSION 2
    De Winter, Stefaan
    Schillewaert, Jeroen
    COMBINATORICA, 2010, 30 (01) : 25 - 45
  • [44] Symplectic capacities of Hermitian symmetric spaces of compact and noncompact type
    Loi, Andrea
    Mossa, Roberto
    Zuddas, Fabio
    JOURNAL OF SYMPLECTIC GEOMETRY, 2015, 13 (04) : 1049 - 1073
  • [45] Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and spaces of codimension 2
    Stefaan De Winter
    Jeroen Schillewaert
    Combinatorica, 2010, 30 : 25 - 45
  • [46] Double covers of symplectic dual polar graphs
    Moorhouse, G. Eric
    Williford, Jason
    DISCRETE MATHEMATICS, 2016, 339 (02) : 571 - 588
  • [47] Light tails and the Hermitian dual polar graphs
    Koolen, Jack
    Qiao, Zhi
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) : 3 - 12
  • [48] Light tails and the Hermitian dual polar graphs
    Jack Koolen
    Zhi Qiao
    Designs, Codes and Cryptography, 2017, 84 : 3 - 12
  • [49] Polar supermultiplets, hermitian symmetric spaces and hyperkahler metrics
    Arai, Masato
    Kuzenko, Sergei M.
    Lindstroem, Ulf
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12):
  • [50] Partial ovoids and partial spreads in hermitian polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 47 (1-3) : 21 - 34