Semiautomatic segmentation of atherosclerotic carotid artery lumen using 3D ultrasound imaging

被引:2
|
作者
Hossain, Md. Murad [1 ]
AlMuhanna, Khalid [1 ]
Zhao, Limin
Lal, Brajesh
Sikdar, Siddhartha [1 ]
机构
[1] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
来源
关键词
Level set method; 3D segmentation; stopping criteria; ultrasound; carotid artery; lumen intima boundary; Hausdorff distance; stroke; 3-DIMENSIONAL ULTRASOUND; IMAGES; PLAQUE; ALGORITHMS; EVOLUTION; DISTANCE; VOLUME; TOOL;
D O I
10.1117/12.2007030
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Carotid atherosclerosis is a major cause of stroke. Imaging and monitoring plaque progression in 3D can better classify disease severity and potentially identify plaque vulnerability to rupture. In this study we propose to validate a new semiautomatic carotid lumen segmentation algorithm based on 3D ultrasound imaging that is designed to work in the presence of poor boundary contrast and complex 3D lumen geometries. Our algorithm uses a distance regularized level set evolution with a novel initialization and stopping criteria to localize the lumen-intima boundary (LIB). The external energy used in the level set method is a combination of region-based and edge-based energy. Initialization of LIB segmentation is first done in the longitudinal slice where the geometry of the carotid bifurcation is best visualized and then reconstructed in the cross sectional slice to guide the 3D initialization. Manual initialization of the contour is done only on the starting slice of the common carotid, bifurcation, and internal & external carotid arteries. Initialization of the other slices is done by eroding segmentation of previous slices. The user also initializes the boundary points for every slice. A combination of changes in the modified Hausdorff distance (MHD) between contours at successive iterations and a stopping boundary formed from initial boundary points is used as a stopping criterion to avoid over- or under-segmentation The proposed algorithm is evaluated against manually segmented boundaries by calculating dice similarity coefficient (DSC), HD and MHD in the common carotid (C), carotid bulb (B) and internal carotid (I) regions to get a better understanding of accuracy?. Results from five subjects with >50% carotid stenosis showed good agreement with manual segmentation; between the semiautomatic algorithm & manuals: DSC (C: 86.49 +/- 9.38, B: 82.21 +/- 8.49, I: 78.96 +/- 7.55), MHD (C: 3.79 +/- 1.64, B: 4.09 +/- 1.71, I: 4.12 +/- 2.01), HD (C: 8.07 +/- 2.59, B: 10.09 +/- 3.95, I: 11.28 +/- 5.06); and inter observers: DSC (C: 88.31 +/- 5, B: 82.45 +/- 7.57, I: 82.03 +/- 8.83), MHD (C: 3.77 +/- 2.09, B: 4.32 +/- 1.88, I: 4.56 +/- 2.24), HD (C: 7.61 +/- 2.67, B: 10.22 +/- 4.30, I: 10.63 +/- 4.94). This method is a first step towards achieving full 3D characterization of plaque progression, and is currently being evaluated in a longitudinal study of asymptomatic carotid stenosis
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging
    Hossain, Md. Murad
    AlMuhanna, Khalid
    Zhao, Limin
    Lal, Brajesh K.
    Sikdar, Siddhartha
    MEDICAL PHYSICS, 2015, 42 (04) : 2029 - 2043
  • [2] Three Dimensional Level Set Based Semiautomatic Segmentation of Atherosclerotic Carotid Artery Wall Volume Using 3D Ultrasound Imaging
    Hossain, Md Murad
    AlMuhanna, Khalid
    Zhao, Limin
    Lal, Brajesh K.
    Sikdar, Siddhartha
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [3] Carotid Artery Lumen Segmentation in 3D Free-Hand Ultrasound Images Using Surface Graph Cuts
    Lorza, Andres M. Arias
    Carvalho, Diego D. B.
    Petersen, Jens
    van Dijk, Anouk C.
    van der Lugt, Aad
    Niessen, Wiro J.
    Klein, Stefan
    de Bruijne, Marleen
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 : 542 - 549
  • [4] Carotid Artery Segmentation in 3D Ultrasound Images Using a Hybrid Framework
    Wang, Xiaotong
    Zhang, Yaonan
    PROCEEDING OF THE IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2012, : 698 - 703
  • [5] Segmentation of the Lumen and Media-Adventitia Boundaries of the Common Carotid Artery from 3D Ultrasound Images
    Ukwatta, E.
    Awad, J.
    Ward, A. D.
    Samarabandu, J.
    Krasinski, A.
    Parraga, G.
    Fenster, A.
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [6] Semiautomatic carotid lumen segmentation for quantification of lumen geometry in multispectral MRI
    Tang, Hui
    van Walsum, Theo
    van Onkelen, Robbert S.
    Hameeteman, Reinhard
    Klein, Stefan
    Schaap, Michiel
    Tori, Fufa L.
    van den Bouwhuijsen, Quirijn J. A.
    Witteman, Jacqueline C. M.
    van der Lugt, Aad
    van Vliet, Lucas J.
    Niessen, Wiro J.
    MEDICAL IMAGE ANALYSIS, 2012, 16 (06) : 1202 - 1215
  • [7] Towards 3D ultrasound imaging of the carotid artery using a programmable and tileable matrix array
    Kruizinga, Pieter
    Kang, Eunchul
    Shabanimotlagh, Maysam
    Ding, Qing
    Noothout, Emile
    Chang, Zu Yao
    Vos, Hendrick J.
    Bosch, Johannes G.
    Verweij, Martin D.
    Pertijs, Michiel A. P.
    de Chang, Nico
    2017 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2017,
  • [8] Semiautomatic segmentation of 3D contrast-enhanced MR and stenosis quantification angiograms of the internal carotid artery
    van Bemmel, CM
    Viergever, MA
    Niessen, WJ
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (04) : 753 - 760
  • [9] LUMEN SEGMENTATION OF ATHEROSCLEROTIC CAROTID ARTERIES IN CTA
    Tang, Hui
    van Walsum, Theo
    Hameeteman, Reinhard
    Schaap, Michiel
    van der Lugt, Aad
    van Vliet, Lucas J.
    Niessen, Wiro J.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 274 - 277
  • [10] 3D Carotid Ultrasound Imaging for Monitoring Carotid Atherosclerosis
    Fenster, A.
    MEDICAL PHYSICS, 2009, 36 (06) : 2788 - +