Smoothing Parameter and Model Selection for General Smooth Models

被引:830
|
作者
Wood, Simon N. [1 ]
Pya, Natalya [2 ,3 ]
Saefken, Benjamin [4 ,5 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Nazarbayev Univ, Sch Sci & Technol, Astana, Kazakhstan
[3] KIMEP Univ, Alma Ata, Kazakhstan
[4] Georg August Univ Gottingen, Chair Stat, Gottingen, Germany
[5] Georg August Univ Gottingen, Chair Econometr, Gottingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Additive model; AIC; Distributional regression; GAM; Location scale and shape model; Ordered categorical regression; Penalized regression spline; REML; Smooth Cox model; Smoothing parameter uncertainty; Statistical algorithm; Tweedie distribution; STRUCTURED ADDITIVE REGRESSION; APPROXIMATE BAYESIAN-INFERENCE; CONFIDENCE-INTERVALS; SCALE;
D O I
10.1080/01621459.2016.1180986
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article discusses a general framework for smoothing parameter estimation for models with regular likelihoods constructed in terms of unknown smooth functions of covariates. Gaussian random effects and parametric terms may also be present. By construction the method is numerically stable and convergent, and enables smoothing parameter uncertainty to be quantified. The latter enables us to fix a well known problem with AIC for such models, thereby improving the range of model selection tools available. The smooth functions are represented by reduced rank spline like smoothers, with associated quadratic penalties measuring function smoothness. Model estimation is by penalized likelihood maximization, where the smoothing parameters controlling the extent of penalization are estimated by Laplace approximate marginal likelihood. The methods cover, for example, generalized additive models for nonexponential family responses (e.g., beta, ordered categorical, scaled t distribution, negative binomial and Tweedie distributions), generalized additive models for location scale and shape (e.g., two stage zero inflation models, and Gaussian location scale models), Cox proportional hazards models and multivariate additive models. The framework reduces the implementation of new model classes to the coding of some standard derivatives of the log-likelihood. Supplementary materials for this article are available online.
引用
收藏
页码:1548 / 1563
页数:16
相关论文
共 50 条
  • [31] The admissible parameter space for exponential smoothing models
    Rob J. Hyndman
    Muhammad Akram
    Blyth C. Archibald
    Annals of the Institute of Statistical Mathematics, 2008, 60 : 407 - 426
  • [32] Selection of smoothing parameter estimators for general regression neural networks - Applications to hydrological and water resources modelling
    Li, Xuyuan
    Zecchin, Aaron C.
    Maier, Holger R.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 59 : 162 - 186
  • [33] Smoothing parameter selection in two frameworks for penalized splines
    Krivobokova, Tatyana
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (04) : 725 - 741
  • [34] SELECTION OF AN OPTIMUM SMOOTHING PARAMETER OF EXPERIMENTAL-DATA
    VASILEV, OB
    SAKHAROV, VI
    ASTRONOMICHESKII ZHURNAL, 1973, 50 (02): : 390 - 399
  • [35] Parameter identifiability and model selection for sigmoid population growth models
    Simpson, Matthew J.
    Browning, Alexander P.
    Warne, David J.
    Maclaren, Oliver J.
    Baker, Ruth E.
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 535
  • [36] Extended models for nosocomial infection: parameter estimation and model selection
    Thomas, Alun
    Khader, Karim
    Redd, Andrew
    Leecaster, Molly
    Zhang, Yue
    Jones, Makoto
    Greene, Tom
    Samore, Matthew
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2018, 35 : 29 - 49
  • [37] Bayesian parameter estimation and model selection in nonlocal viscoelastic models
    Faria, Domenio de Souza
    Stutz, Leonardo Tavares
    Castello, Daniel Alves
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 211
  • [38] Fast and accurate inference for the smoothing parameter in semiparametric models
    Paige, Robert L.
    Trindade, A. Alexandre
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2013, 55 (01) : 25 - 41
  • [39] General models of marine animal habitats require a process-based approach to parameter selection and model design Reply
    Skov, Henrik
    Thomsen, Frank
    MARINE ECOLOGY PROGRESS SERIES, 2010, 399 : 299 - 303
  • [40] Exponential smoothing model selection for forecasting
    Billah, B
    King, ML
    Snyder, RD
    Koehler, AB
    INTERNATIONAL JOURNAL OF FORECASTING, 2006, 22 (02) : 239 - 247