SSP-Pose: Symmetry-Aware Shape Prior Deformation for Direct Category-Level Object Pose Estimation

被引:15
|
作者
Zhang, Ruida [1 ]
Di, Yan [2 ]
Manhardt, Fabian [3 ]
Tombari, Federico [2 ,3 ]
Ji, Xiangyang [1 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Tech Univ Munich, Munich, Germany
[3] Google, Mountain View, CA 94043 USA
关键词
D O I
10.1109/IROS47612.2022.9981506
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Category-level pose estimation is a challenging problem due to intra-class shape variations. Recent methods deform pre-computed shape priors to map the observed point cloud into the normalized object coordinate space and then retrieve the pose via post-processing, i.e., Umeyama's Algorithm. The shortcomings of this two-stage strategy lie in two aspects: 1) The surrogate supervision on the intermediate results can not directly guide the learning of pose, resulting in large pose error after post-processing. 2) The inference speed is limited by the post-processing step. In this paper, to handle these shortcomings, we propose an end-to-end trainable network SSP-Pose for category-level pose estimation, which integrates shape priors into a direct pose regression network. SSP-Pose stacks four individual branches on a shared feature extractor, where two branches are designed to deform and match the prior model with the observed instance, and the other two branches are applied for directly regressing the totally 9 degrees-of-freedom pose and performing symmetry reconstruction and point-wise inlier mask prediction respectively. Consistency loss terms are then naturally exploited to align the outputs of different branches and promote the performance. During inference, only the direct pose regression branch is needed. In this manner, SSP-Pose not only learns category-level pose-sensitive characteristics to boost performance but also keeps a real-time inference speed. Moreover, we utilize the symmetry information of each category to guide the shape prior deformation, and propose a novel symmetry-aware loss to mitigate the matching ambiguity. Extensive experiments on public datasets demonstrate that SSP-Pose produces superior performance compared with competitors with a real-time inference speed at about 25Hz. The codes will be released soon.
引用
收藏
页码:7452 / 7459
页数:8
相关论文
共 50 条
  • [41] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
    Wang, He
    Sridhar, Srinath
    Huang, Jingwei
    Valentin, Julien
    Song, Shuran
    Guibas, Leonidas J.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2637 - 2646
  • [42] Bi-directional attention based RGB-D fusion for category-level object pose and shape estimation
    Tang, Kaifeng
    Xu, Chi
    Chen, Ming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 53043 - 53063
  • [43] Self-Supervised Category-Level 6D Object Pose Estimation with Deep Implicit Shape Representation
    Peng, Wanli
    Yan, Jianhang
    Wen, Hongtao
    Sun, Yi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2082 - 2090
  • [44] Bi-directional attention based RGB-D fusion for category-level object pose and shape estimation
    Kaifeng Tang
    Chi Xu
    Ming Chen
    Multimedia Tools and Applications, 2024, 83 : 53043 - 53063
  • [45] TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation
    Lee, Taeyeop
    Tremblay, Jonathan
    Blukis, Valts
    Wen, Bowen
    Lee, Byeong-Uk
    Shin, Inkyu
    Birchfield, Stan
    Kweon, In So
    Yoon, Kuk-Jin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21285 - 21295
  • [46] Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation
    Li, Xiaolong
    Weng, Yijia
    Yi, Li
    Guibas, Leonidas
    Abbott, A. Lynn
    Song, Shuran
    Wang, He
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [47] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [48] Category-Level Articulated Object 9D Pose Estimation via Reinforcement Learning
    Liu, Liu
    Du, Jianming
    Wu, Hao
    Yang, Xun
    Liu, Zhenguang
    Hong, Richang
    Wang, Meng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 728 - 736
  • [49] MSSPA-GC: Multi-Scale Shape Prior Adaptation with 3D Graph Convolutions for Category-Level Object Pose Estimation
    Zou, Lu
    Huang, Zhangjin
    Gu, Naijie
    Wang, Guoping
    NEURAL NETWORKS, 2023, 166 : 609 - 621
  • [50] GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting
    Di, Yan
    Zhang, Ruida
    Lou, Zhiqiang
    Manhardt, Fabian
    Ji, Xiangyang
    Navab, Nassir
    Tombari, Federico
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6771 - 6781