Principle for performing attractor transits with single control in Boolean networks

被引:23
|
作者
Gao, Bo [1 ,2 ,3 ]
Li, Lixiang [2 ]
Peng, Haipeng [2 ]
Kurths, Juergen [4 ]
Zhang, Wenguang [5 ]
Yang, Yixian [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
[3] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010051, Peoples R China
[4] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[5] Inner Mongolia Agr Univ, Coll Anim Sci, Hohhot 010018, Peoples R China
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Algebraic approaches - Boolean Networks - Control sequences - Dictyostelium discoideum - Gene Regulation Network - Protein-nucleic acid interaction - Semi-tensor product - State transition Matrix;
D O I
10.1103/PhysRevE.88.062706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an algebraic approach to reveal attractor transitions in Boolean networks under single control based on the recently developed matrix semitensor product theory. In this setting, the reachability of attractors is estimated by the state transition matrices. We then propose procedures that compute the shortest control sequence and the result of each step of input (control) exactly. The general derivation is exemplified by numerical simulations for two kinds of gene regulation networks, the protein-nucleic acid interactions network and the cAMP receptor of Dictyostelium discoideum network.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Attractor separation and signed cycles in asynchronous Boolean networks
    Richard, Adrien
    Tonello, Elisa
    THEORETICAL COMPUTER SCIENCE, 2023, 947
  • [22] AEON: Attractor Bifurcation Analysis of Parametrised Boolean Networks
    Benes, Nikola
    Brim, Lubos
    Kadlecaj, Jakub
    Pastva, Samuel
    Safranek, David
    COMPUTER AIDED VERIFICATION (CAV 2020), PT I, 2020, 12224 : 569 - 581
  • [23] Attractor controllability of Boolean networks by flipping a subset of their nodes
    Rafimanzelat, Mohammad Reza
    Bahrami, Fariba
    CHAOS, 2018, 28 (04)
  • [24] A Method for Computing Attractor Fields in Coupled Boolean Networks
    Tovar, Carlos R. P.
    Martins-, David C., Jr.
    Rozante, Luiz C. S.
    Araujo, Eloi
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 315 - 320
  • [25] Taming Asynchrony for Attractor Detection in Large Boolean Networks
    Mizera, Andrzej
    Pang, Jun
    Qu, Hongyang
    Yuan, Qixia
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (01) : 31 - 42
  • [26] Algorithms for Singleton Attractor Detection in Planar and Nonplanar AND/OR Boolean Networks
    Tamura, Takeyuki
    Akutsu, Tatsuya
    MATHEMATICS IN COMPUTER SCIENCE, 2009, 2 (03) : 401 - 420
  • [27] Categorizing Attractor-Effective Canalyzing Functions in Boolean Networks
    Zhao, Yun-Bo
    Dong, Hui
    Ni, Hongjie
    IFAC PAPERSONLINE, 2017, 50 (01): : 14746 - 14751
  • [28] Attractor analysis of asynchronous Boolean models of signal transduction networks
    Saadatpour, Assieh
    Albert, Istvan
    Albert, Reka
    JOURNAL OF THEORETICAL BIOLOGY, 2010, 266 (04) : 641 - 656
  • [29] Attractor Dynamics Driven by Interactivity in Boolean Recurrent Neural Networks
    Cabessa, Jeremie
    Villa, Alessandro E. P.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT I, 2016, 9886 : 115 - 122
  • [30] Novel Method for Singleton and Cyclic Attractor Observability in Boolean Networks
    Qiu, Yushan
    Huang, Yulong
    Tan, Shaobo
    Li, Dongqi
    van der Zijp-Tan, Ada Chaeli
    Fong, Ada
    Borchert, Glen M.
    Huang, Jingshan
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 1526 - 1531