Hall Effect Thruster with an ALN chamber

被引:0
|
作者
Barral, S [1 ]
Jayet, Y
Véron, E
Mazouffre, S
Echegut, P
Dudeck, A
机构
[1] Polish Acad Sci, Inst Fundamental Technol Res, Swietokrzyska 21, PL-00049 Warsaw, Poland
[2] CNRS, Lab dAerothermique, F-45071 Orleans, France
[3] CNRS, Centre Recherche Materiaux Hautes Temperature, F-45071 Orleans, France
来源
PLASMA 2005 | 2006年 / 812卷
关键词
Hall thruster; AIN; erosion;
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The potential of AlN as a material for Hall thruster channels is assessed on the basis of actual thruster performances, computer simulations of the discharge and microscopy studies of an eroded channel. Comparison of experimental and numerical data provides further evidence that secondary electron emission (SEE) is the main phenomena responsible for wall-induced currents. The high discharge currents observed are characteristic for high SEE materials and result in a much lower thruster efficiency than with a conventional BN-SiO2 channel. The delivered thrust is also affected in the medium voltage range. With respect to erosion, scanning electron images performed after 14 hours of operation already reveal precursors of anomalous erosion patterns on the channel front side.
引用
收藏
页码:427 / +
页数:2
相关论文
共 50 条
  • [21] Effects of wall electrodes on Hall effect thruster plasma
    Langendorf, S.
    Xu, K.
    Walker, M.
    PHYSICS OF PLASMAS, 2015, 22 (02)
  • [22] Experimental investigation of a water electrolysis Hall effect thruster
    Schwertheim, Alexander
    Knoll, Aaron
    ACTA ASTRONAUTICA, 2022, 193 : 607 - 618
  • [23] Effect of anode dielectric coating on Hall thruster operation
    Dorf, L
    Raitses, Y
    Fisch, NJ
    Semenov, V
    APPLIED PHYSICS LETTERS, 2004, 84 (07) : 1070 - 1072
  • [24] Non-invasive Hall current distribution measurement in a Hall effect thruster
    Mullins, Carl R.
    Farnell, Casey C.
    Farnell, Cody C.
    Martinez, Rafael A.
    Liu, David
    Branam, Richard D.
    Williams, John D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (01):
  • [25] Influences of the Hall effect on the plasma flows in a magnetoplasmadynamic thruster
    Kubota, K.
    Funaki, I.
    Okuno, Y.
    FUSION SCIENCE AND TECHNOLOGY, 2007, 51 (2T) : 220 - 222
  • [26] Development of a Magnesium and Zinc Hall-Effect Thruster
    Makela, Jason M.
    Washeleski, Robert L.
    Massey, Dean R.
    King, Lyon B.
    Hopkins, Mark A.
    JOURNAL OF PROPULSION AND POWER, 2010, 26 (05) : 1029 - 1035
  • [27] Ion focusing improves Hall-effect thruster
    Flinn, Edward D.
    AEROSPACE AMERICA, 2007, 45 (09) : 24 - 25
  • [28] Physics of Hall-Effect Thruster by Particle Model
    Taccogna, Francesco
    Minelli, Pierpaolo
    Capitelli, Mario
    Longo, Savino
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 1390 - 1399
  • [29] Design, fabrication, and testing of an undergraduate hall effect thruster
    Oh, Braden
    Countryman, Albert
    Regassa, Mahderekal
    Clowes, Avery
    Miner, Grant
    Kemp, Simon
    McAneney, S. C. Mack
    Klein, Marissa
    Lee, Christopher
    Journal of Electric Propulsion, 2023, 2 (01):
  • [30] Simulation of a Hall Effect Thruster Using Krypton Propellant
    Dragnea, Horatiu C.
    Ortega, Alejandro Lopez
    Kamhawi, Hani
    Boyd, Iain D.
    JOURNAL OF PROPULSION AND POWER, 2020, 36 (03) : 335 - 345