A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images

被引:26
|
作者
Ganci, Gaetana [2 ]
Vicari, Annamaria [2 ]
Bonfiglio, Sergio [1 ,2 ]
Gallo, Giovanni [1 ]
Del Negro, Ciro [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95124 Catania, Italy
[2] Sez Catania, Ist Nazl Geofis & Vulcanol, Catania, Italy
关键词
ACTIVE VOLCANOS; CLASSIFICATION; TEXTURE;
D O I
10.1080/19475705.2011.578263
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A new statistical texton-based method for cloud detection through satellite image analysis is presented. The ultimate goal is to improve the performance of remote sensing techniques used to support the observations of active volcanic processes. The proposed method is a supervised classifier that exploits radiance spatial correlation in satellite images using a statistical descriptor of texture called texton. Cloudy and clear-sky models are determined using cluster analysis over the image features. The pixels to be classified are compared with the estimated models and assigned to the closest model. The cloud detection algorithm has been tested on a data set of MSG-SEVIRI images acquired during 2008 (about 35,000 images) of the Sicily area. Results show that the texton-based approach is robust in terms of percentage of correctly classified pixels, reaching more than 85% of success in both daytime and nighttime images.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条
  • [31] Development of a Dust Assimilation System for NMM-DREAM Model Based on MSG-SEVIRI Satellite Observations
    Solomos, S.
    Nickovic, S.
    Amiridis, V.
    Pejanovic, G.
    Pradhan, Y.
    Marenco, F.
    Petkovic, S.
    Marinou, E.
    Cvetkovic, B.
    Kontoes, C.
    PERSPECTIVES ON ATMOSPHERIC SCIENCES, 2017, : 801 - 807
  • [32] Proposal and Validation of an Emissivity-Dependent Algorithm to Retrieve Sea-Surface Temperature From MSG-SEVIRI Data
    Niclos, Raquel
    Jose Estrela, Maria
    Antonio Valiente, Jose
    Jesus Barbera, Maria
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) : 786 - 790
  • [33] ASSESSMENT OF CANCER THERAPY EFFECTS USING TEXTON-BASED CHARACTERIZATION OF QUANTITATIVE ULTRASOUND PARAMETRIC IMAGES
    Gangeh, Mehrdad J.
    Sadeghi-Naini, Ali
    Kamel, Mohamed S.
    Czarnota, Gregory J.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1372 - 1375
  • [34] Development of a hybrid classification technique based on deep learning applied to MSG / SEVIRI multispectral data
    Oukali, Salim
    Lazri, Mourad
    Labadi, Karim
    Brucker, Jean Michel
    Ameur, Soltane
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2019, 193
  • [35] Cloud Detection of MODIS Multispectral Images
    Murino, Loredana
    Amato, Umberto
    Carfora, Maria Francesca
    Antoniadis, Anestis
    Huang, Bormin
    Menzel, W. Paul
    Serio, Carmine
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (02) : 347 - 365
  • [36] A satellite rainfall retrieval technique over northern Algeria based on the probability of rainfall intensities classification from MSG-SEVIRI
    Lazri, Mourad
    Ameur, Soltane
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2016, 147 : 106 - 120
  • [37] Total ozone retrieval from MSG-SEVIRI data by means of neural networks -: Algorithm development, calibration, validation and real time application
    Kaifel, A
    Müller, M
    FIRST MSG RAO WORKSHOP, 2000, 452 : 79 - 82
  • [38] The MSG-SEVIRI-based cloud property data record CLAAS-2
    Benas, Nikos
    Finkensieper, Stephan
    Stengel, Martin
    van Zadelhoff, Gerd-Jan
    Hanschmann, Timo
    Hollmann, Rainer
    Meirink, Jan Fokke
    EARTH SYSTEM SCIENCE DATA, 2017, 9 (02) : 415 - 434
  • [39] Cloud Shadows Detection and Compensation Algorithm on Multispectral Satellite Images for Agricultural Regions
    Bocharov, D. A.
    Nikolaev, D. P.
    Pavlova, M. A.
    Timofeev, V. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2022, 67 (06) : 728 - 739
  • [40] Cloud Shadows Detection and Compensation Algorithm on Multispectral Satellite Images for Agricultural Regions
    D. A. Bocharov
    D. P. Nikolaev
    M. A. Pavlova
    V. A. Timofeev
    Journal of Communications Technology and Electronics, 2022, 67 : 728 - 739