Molecule Specific Normalization for Protein and Metabolite Biomarker Discovery

被引:0
|
作者
Trabelsi, Ameni [1 ]
Shi, Biyun [2 ]
Wei, Xiaoli [2 ]
Frigui, Hichem [1 ,5 ]
Zhang, Xiang [2 ,6 ]
McClain, Craig [3 ,4 ,7 ]
Shahrajooihaghighi, Aliasghar [1 ]
机构
[1] Univ Louisville, Dept Comp Engn & Comp Sci, Louisville, KY 40292 USA
[2] Univ Louisville, Dept Chem, Louisville, KY 40292 USA
[3] Univ Louisville, Dept Med, Louisville, KY 40292 USA
[4] Univ Louisville, Dept Pharmacol Toxicol, Louisville, KY 40292 USA
[5] Univ Louisville, Multimedia Res Lab, Louisville, KY 40292 USA
[6] Univ Louisville, Bioanalyt Grp, Louisville, KY 40292 USA
[7] Louisville VAMC, Gastroenterol, Louisville, KY USA
关键词
Normalization; Robust Surface Fitting; Machine Learning; Loess Regression; Biomarker Discovery; MASS-SPECTROMETRY;
D O I
10.1145/3297280.3297284
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper proposes a molecule specific normalization algorithm, called MSN, which adopts a robust surface fitting strategy to minimize the molecular profile difference of a group of house-keeping molecules across samples. The house-keeping molecules are those molecules whose abundance levels were not affected by the biological treatment. The applications of the MSN method on two different datasets showed that MSN is a highly efficient normalization algorithm that yields the highest sensitivity and accuracy compared to five existing normalization algorithms
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [41] The interface between biomarker discovery and clinical validation: The tar pit of the protein biomarker pipeline
    Paulovich, Amanda G.
    Whiteaker, Jeffrey R.
    Hoofnagle, Andrew N.
    Wang, Pei
    PROTEOMICS CLINICAL APPLICATIONS, 2008, 2 (10-11) : 1386 - 1402
  • [42] Single-molecule fluorescence methods for protein biomarker analysis
    He, Haihan
    Wu, Chuhong
    Saqib, Muhammad
    Hao, Rui
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2023, 415 (18) : 3655 - 3669
  • [43] Single-molecule fluorescence methods for protein biomarker analysis
    Haihan He
    Chuhong Wu
    Muhammad Saqib
    Rui Hao
    Analytical and Bioanalytical Chemistry, 2023, 415 : 3655 - 3669
  • [44] Discovery and Qualification of Serum Protein Biomarker Candidates for Cholangiocarcinoma Diagnosis
    Duangkumpha, Kassaporn
    Stoll, Thomas
    Phetcharaburanin, Jutarop
    Yongvanit, Puangrat
    Thanan, Raynoo
    Techasen, Anchalee
    Namwat, Nisana
    Khuntikeo, Narong
    Chamadol, Nittaya
    Roytrakul, Sittiruk
    Mulvenna, Jason
    Mohamed, Ahmed
    Shah, Alok K.
    Hill, Michelle M.
    Loilome, Watcharin
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (09) : 3305 - 3316
  • [45] Mass spectrometric protein maps for biomarker discovery and clinical research
    Liu, Yansheng
    Huettenhain, Ruth
    Collins, Ben
    Aebersold, Ruedi
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2013, 13 (08) : 811 - 825
  • [46] Making the cut: untangling clinical protein biomarker discovery and validation
    Gold, Larry
    Williams, Stephen
    Janjic, Nebojsa
    Saccomano, Nick
    Steele, Fintan
    BIOMARKERS IN MEDICINE, 2011, 5 (02) : 189 - 191
  • [47] Cerebrospinal Fluid Protein Biomarker Discovery in CLN3
    Do, An N. Dang N.
    Sleat, David E. E.
    Campbell, Kiersten
    Johnson, Nicholas L. L.
    Zheng, Haiyan
    Wassif, Christopher A. A.
    Dale, Ryan K. K.
    Porter, Forbes D. D.
    JOURNAL OF PROTEOME RESEARCH, 2023, 22 (07) : 2493 - 2508
  • [48] New technologies in cancer. Protein microarrays for biomarker discovery
    Matarraz, Sergio
    Gonzalez-Gonzalez, Maria
    Jara, Maria
    Orfao, Alberto
    Fuentes, Manuel
    CLINICAL & TRANSLATIONAL ONCOLOGY, 2011, 13 (03): : 156 - 161
  • [49] Cancer protein biomarker discovery based on nucleic acid aptamers
    Xiong, Hongjie
    Yan, Jianhua
    Cai, Shundong
    He, Qunye
    Peng, Dongming
    Liu, Zhenbao
    Liu, Yanfei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 132 : 190 - 202
  • [50] Protein Array-based Approaches for Biomarker Discovery in Cancer
    Huang, Yi
    Zhu, Heng
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2017, 15 (02) : 73 - 81