LaNixFe1-xO3 (0 ≤ x ≤ 1) as photothermal catalysts for hydrocarbon fuels production from CO2 and H2O

被引:21
|
作者
Zheng, Dongmei [1 ]
Wei, Guohui [1 ]
Xu, Lijuan [1 ]
Guo, Qiangsheng [2 ]
Hu, Jianfeng [3 ]
Sha, Na [2 ]
Zhao, Zhe [1 ,4 ]
机构
[1] Shanghai Inst Technol, Sch Mat Sci & Engn, Shanghai 201418, Peoples R China
[2] Shanghai Inst Technol, Sch Chem & Environm Engn, Shanghai 201418, Peoples R China
[3] Shanghai Univ, Sch Mat Scinece & Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
[4] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
基金
国家重点研发计划;
关键词
LaNiO3; LaFeO3; Photothermal catalysis; CO2; reduction; PHOTOCATALYTIC REDUCTION; HYDROGEN-PRODUCTION; LANIO3; PEROVSKITE; WATER; PROPERTY; CH4; PHOTOREDUCTION; OXIDATION; EFFICIENT; METHANE;
D O I
10.1016/j.jphotochem.2019.03.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LaNixFe1-xO3 perovskite compounds (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) were successfully synthesized by a sol-gel combustion method. The crystal structure, morphology, BET surface area, oxygen vacancies, band gap and catalytic properties of the catalyst were characterized in detail. The results showed that LaNi0.4Fe0.6O3 compound exhibits the best photothermal catalytic performance. Under the same catalytic conditions (350 degrees C + Vislight), CH4 and CH3OH yields are about 3.5 and 4.0 times, 1.8 and 2.1 times of that of LaFeO3 and LaNiO3. It was found that all the solid solutions possesses better catalytic properties than the pure end compounds. The doping of Ni lead to a significant modification with the quantity of oxygen vacancies and band gaps. These findings may further broaden the materials scope for photothermal conversion of CO2 and H2O.
引用
收藏
页码:182 / 189
页数:8
相关论文
共 50 条
  • [31] Positronium formation from CO2 and H2O
    Murtagh, D. J.
    Arcidiacono, C.
    Pesic, Z. D.
    Laricchia, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 247 (01): : 92 - 97
  • [32] Thermochemical CO2 and CO2/H2O splitting over NiFe2O4 for solar fuels synthesis
    Lorentzou, S.
    Karagiannakis, G.
    Pagkoura, C.
    Zygogianni, A.
    Konstandopoulos, A. G.
    PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 : 1999 - 2008
  • [33] TEMPERATURE DEPENDENCIES OF THE REACTIONS OF CO3-(H2O)(0,1) AND O-3(-) WITH NO AND NO2
    ARNOLD, ST
    MORRIS, RA
    VIGGIANO, AA
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (07): : 2454 - 2458
  • [34] Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices
    Isokoski, K.
    Bossa, J. -B.
    Triemstra, T.
    Linnartz, H.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (08) : 3456 - 3465
  • [35] Chemical diffusion coefficient of H2O in AB(1-x)B′xO(3-x/2)-type perovskites
    Virkar, AV
    Baek, HD
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (12) : 3059 - 3064
  • [36] H2O absorption line shifts of the v1 + 3v3 band caused by pressure of H2, CO2, and H2O
    Lazarev, V.V.
    Ponomarev, Yu.N.
    Stroinova, V.N.
    Tikhomirov, B.A.
    Atmospheric and Oceanic Optics(English Edition of the Journal Optika Atmosfery i Okeana), 1992, 5 (09):
  • [37] Plasmon resonant enhancement of photocatalytic production of hydrocarbon fuels from CO2
    Cronin, Steve
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [38] Carbon dioxide segregation in 1:4 and 1:9 CO2:H2O ices
    Hodyss, Robert
    Johnson, Paul V.
    Orzechowska, Grazyna E.
    Goguen, Jay D.
    Kanik, Isik
    ICARUS, 2008, 194 (02) : 830 - 836
  • [39] Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature
    Protti, Stefano
    Albini, Angelo
    Serpone, Nick
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (37) : 19790 - 19827
  • [40] HYDROCARBON CHEMISTRY IN IRRADIATED CO2/CO/CH4/H2O/H2 MIXTURES .1. A SURVEY OF THE INITIAL REACTIONS
    NORFOLK, DJ
    SKINNER, RF
    WILLIAMS, WJ
    RADIATION PHYSICS AND CHEMISTRY, 1983, 21 (03): : 307 - 319