Robust turbulence simulation for particle-based fluids using the Rankine vortex model

被引:3
|
作者
Wang, Xiaokun [1 ]
Liu, Sinuo [1 ]
Ban, Xiaojuan [1 ]
Xu, Yanrui [1 ]
Zhou, Jing [1 ]
Kosinka, Jiri [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing, Peoples R China
[2] Univ Groningen, Bernoulli Inst, Groningen, Netherlands
来源
VISUAL COMPUTER | 2020年 / 36卷 / 10-12期
基金
中国国家自然科学基金;
关键词
Fluid simulation; Vortex model; Turbulence; Smoothed particle hydrodynamics; SPH; HYDRODYNAMICS; DETAILS;
D O I
10.1007/s00371-020-01914-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a novel turbulence refinement method based on the Rankine vortex model for smoothed particle hydrodynamics (SPH) simulations. Surface details are enhanced by recovering the energy lost due to the lack of the rotation of SPH particles. The Rankine vortex model is used to convert the diffused and stretched angular kinetic energy of particles to the linear kinetic energy of their neighbors. In previous vorticity-based refinement methods, adding more energy than required by the viscous damping effect leads to instability. In contrast, our model naturally prevents the positive feedback effect between the velocity and vorticity fields since the vortex model is designed to alter the velocity without introducing external sources. Experimental results show that our method can recover missing high-frequency details realistically and maintain convergence in both static and highly dynamic scenarios.
引用
收藏
页码:2285 / 2298
页数:14
相关论文
共 50 条
  • [21] Particle-based Cardiac Rhythm Simulation
    Guo, Jiaxiang
    Yang, Cheng
    Han, Jie
    Tang, Jiayu
    Zheng, Mianlun
    Liao, Xiangyun
    Yuan, Zhiyong
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 2072 - 2075
  • [22] Particle-based fluid simulation on the GPU
    Hegeman, Kyle
    Carr, Nathan A.
    Miller, Gavin S. P.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 4, PROCEEDINGS, 2006, 3994 : 228 - 235
  • [23] Particle-based simulation: An algorithmic perspective
    Saraniti, Marco
    Aboud, Shela
    Branlard, Julien
    Goodnick, Stephen M.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2006, 5 (04) : 405 - 410
  • [24] Particle-based Ising model
    Novinger, Quentin
    Suma, Antonio
    Sigg, Daniel
    Gonnella, Giuseppe
    Carnevale, Vincenzo
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [25] Particle-based simulation: An algorithmic perspective
    Marco Saraniti
    Shela Aboud
    Julien Branlard
    Stephen M. Goodnick
    Journal of Computational Electronics, 2006, 5 : 405 - 410
  • [26] On The Laplacian Model for Particle-Based Simulation Using Moving-Particle Semi-Implicit (Mps) Method
    Ng, Khai-ching
    Sheu, Tony Wen-Hann
    Ng, Khai-Ching
    SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067
  • [27] Particle-based Ice Freezing Simulation
    Miao, Yunbin
    Xiao, Shuangjiu
    14TH ACM SIGGRAPH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY, VRCAI 2015, 2015, : 17 - 22
  • [28] Surface reconstruction method for particle-based fluids using discrete indicator functions
    Incahuanaco, Filomen
    Paiva, Afonso
    COMPUTERS & GRAPHICS-UK, 2023, 114 : 26 - 35
  • [29] MAGNETIZATION MODELS FOR PARTICLE-BASED SIMULATIONS OF MAGNETORHEOLOGICAL FLUIDS
    Lagger, Hanna G.
    Peguiron, Joel
    Bierwisch, Claas
    Moseler, Michael
    COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING IV, 2011, : 1071 - 1082
  • [30] Recent advances in particle-based simulation of surfactants
    Taddese, Tseden
    Anderson, Richard L.
    Bray, David J.
    Warren, Patrick B.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2020, 48 : 137 - 148