Sequences of labeled trees related to Gelfand-Tsetlin patterns

被引:7
|
作者
Fischer, Ilse [1 ]
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Gelfand-Tsetlin patterns; Alternating sign matrices; Monotone triangles;
D O I
10.1016/j.aam.2012.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By rewriting the famous hook-content formula it easily follows that there are Pi(1 <= i<j <= n) k(j)-k(i)+j-i/ j-i semistandard tableaux of shape (k(n), k(n-1) , . . . , k(1)) with entries in {1, 2, . . . , n} or, equivalently, Gelfand-Tsetlin patterns with bottom row (k(1), . . . , k(n)). In this article we introduce certain sequences of labeled trees, the signed enumeration of which is also given by this formula. In these trees, vertices as well as edges are labeled, the crucial condition being that each edge label lies between the vertex labels of the two endpoints of the edge. This notion enables us to give combinatorial explanations of the shifted antisymmetry of the formula and its polynomiality. Furthermore, we propose to develop an analogous approach of combinatorial reasoning for monotone triangles and explain how this may lead to a combinatorial understanding of the alternating sign matrix theorem. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 195
页数:31
相关论文
共 50 条
  • [11] Gelfand-Tsetlin Modules: Canonicity and Calculations
    Turner Silverthorne
    Ben Webster
    Algebras and Representation Theory, 2024, 27 : 1405 - 1455
  • [12] FIBERS OF CHARACTERS IN GELFAND-TSETLIN CATEGORIES
    Futorny, Vyacheslav
    Ovsienko, Serge
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (08) : 4173 - 4208
  • [13] Gelfand-Tsetlin Modules: Canonicity and Calculations
    Silverthorne, Turner
    Webster, Ben
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (02) : 1405 - 1455
  • [14] Gelfand-Tsetlin pattern and strict partitions
    Cheng, SJ
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 64 (01) : 23 - 30
  • [15] Lax formalism for Gelfand-Tsetlin integrable systems
    Correa, Eder M.
    Grama, Lino
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 170
  • [16] Combinatorial construction of Gelfand-Tsetlin modules for gln
    Futorny, Vyacheslav
    Ramirez, Luis Enrique
    Zhang, Jian
    ADVANCES IN MATHEMATICS, 2019, 343 : 681 - 711
  • [17] GELFAND-TSETLIN DEGENERATIONS OF REPRESENTATIONS AND FLAG VARIETIES
    Makhlin, I
    TRANSFORMATION GROUPS, 2022, 27 (02) : 563 - 596
  • [18] Skew Gelfand-Tsetlin patterns, lattice permutations, and skew pattern polynomials
    Louck, JD
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2003, : 241 - 264
  • [19] Gelfand-Tsetlin theory for rational Galois algebras
    Futorny, Vyacheslav
    Grantcharov, Dimitar
    Ramirez, Luis Enrique
    Zadunaisky, Pablo
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 239 (01) : 99 - 128
  • [20] Macdonald polynomials and extended Gelfand-Tsetlin graph
    Olshanski, Grigori
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):