On the essential features of metastability: Tunnelling time and critical configurations

被引:0
|
作者
Manzo, F
Nardi, FR
Olivieri, E
Scoppola, E
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00100 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[4] Ist Nazl Fis Mat, Unita Roma 1, Rome, Italy
关键词
metastability; Metropolis Markov chains; tunneling time; saddle configurations; gates; Ising model;
D O I
10.1023/B:JOSS.0000019822.45867.ec
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Metropolis Markov chains with finite state space and transition probabilities of the form P(eta, eta') = q(eta, eta') e(-beta[H(eta')- H(eta)]+) for given energy function H and symmetric Markov kernel q. We propose a simple approach to determine the asymptotic behavior, for large beta, of the first hitting time to the ground state starting from a particular class of local minima for H called metastable states. We separate the asymptotic behavior of the transition time from the determination of the tube of typical paths realizing the transition. This approach turns out to be useful when the determination of the tube of typical paths is too difficult, as for instance in the case of conservative dynamics. We analyze the structure of the saddles introducing the notion of "essentiality'' and describing essential saddles in terms of "gates.'' As an example we discuss the case of the 2D Ising Model in the degenerate case of integer 2J/h.
引用
收藏
页码:591 / 642
页数:52
相关论文
共 50 条
  • [21] Critical nodes reveal peculiar features of human essential genes and protein interactome
    Celestini, Alessandro
    Cianfriglia, Marco
    Mastrostefano, Enrico
    Palma, Alessandro
    Castiglione, Filippo
    Tieri, Paolo
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 2121 - 2128
  • [22] TUNNELLING THROUGH A TIME-MODULATED BARRIER RELATION TO TUNNELLING TIMES
    JAUHO, AP
    JONSON, M
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (45) : 9027 - 9033
  • [23] Critical friction for wedged configurations
    Hassani, Riad
    Lonescu, Loan R.
    Oudet, Edouard
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (18-19) : 6187 - 6200
  • [24] The role of metastability in the micromorphologic features of sheared isotactic polypropylene melts
    Wu, CM
    Chen, M
    Karger-Kocsis, J
    POLYMER, 1999, 40 (15) : 4195 - 4203
  • [25] Quantum metastability in time-periodic potentials
    Lee, CC
    Ho, CL
    ANNALS OF PHYSICS, 2005, 320 (01) : 175 - 198
  • [26] Tunneling and Metastability of Continuous Time Markov Chains
    Beltran, J.
    Landim, C.
    JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) : 1065 - 1114
  • [27] Tunneling and Metastability of Continuous Time Markov Chains
    J. Beltrán
    C. Landim
    Journal of Statistical Physics, 2010, 140 : 1065 - 1114
  • [28] Critical metastability and destruction of the splitting in non-autonomous systems
    Grecchi, V
    Sacchetti, A
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (1-2) : 339 - 368
  • [29] A critical assessment of different models of the metastability in a-Si:H
    Chierchia, R
    Loreti, S
    Loreto, V
    Mariucci, L
    Minarini, C
    Mittiga, A
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (4A): : 1736 - 1746
  • [30] THE CONTACT PROCESS ON RANDOM HYPERBOLIC GRAPHS: METASTABILITY AND CRITICAL EXPONENTS
    Linker, Amitai
    Mitsche, Dieter
    Schapira, Bruno
    Valesin, Daniel
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1480 - 1514