Some asymptotic results for transient random walks

被引:54
|
作者
Bertoin, J [1 ]
Doney, RA [1 ]
机构
[1] UNIV MANCHESTER,DEPT MATH,STAT LAB,MANCHESTER M13 9PL,LANCS,ENGLAND
关键词
transient random walks;
D O I
10.2307/1427918
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a real-valued random walk S which drifts to -infinity and is such that E(exp theta S-1)<infinity for some theta>0, but for which Cramer's condition fails. We investigate the asymptotic tail behaviour of the distributions of the all time maximum, the upwards and downwards first passage times and the last passage times, As an application, we obtain new limit theorems for certain conditional laws.
引用
收藏
页码:207 / 226
页数:20
相关论文
共 50 条
  • [41] On some random walks on Z in random medium
    Brémont, J
    ANNALS OF PROBABILITY, 2002, 30 (03): : 1266 - 1312
  • [42] ASYMPTOTIC-BEHAVIOR FOR RANDOM-WALKS IN RANDOM-ENVIRONMENTS
    ALILI, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (11): : 1207 - 1212
  • [43] Laws of iterated logarithm for transient random walks in random environments
    Fuqing Gao
    Frontiers of Mathematics in China, 2015, 10 : 857 - 874
  • [44] Cutoff and mixing time for transient random walks in random environments
    Gantert, Nina
    Kochler, Thomas
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 449 - 484
  • [45] Asymptotic medians of random permutations sampled from reversal random walks
    Jamshidpey, Arash
    Sankoff, David
    THEORETICAL COMPUTER SCIENCE, 2017, 698 : 9 - 13
  • [46] Transient random walks in random environment on a Galton–Watson tree
    Elie Aidékon
    Probability Theory and Related Fields, 2008, 142 : 525 - 559
  • [47] EMPIRICAL PROCESSES FOR RECURRENT AND TRANSIENT RANDOM WALKS IN RANDOM SCENERY
    Guillotin-Plantard, Nadine
    Pene, Francoise
    Wendler, Martin
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 127 - 137
  • [48] LIMIT LAWS FOR TRANSIENT RANDOM WALKS IN RANDOM ENVIRONMENT ON Z
    Enriquez, Nathanael
    Sabot, Christophe
    Zindy, Olivier
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) : 2469 - 2508
  • [49] Laws of iterated logarithm for transient random walks in random environments
    Gao, Fuqing
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (04) : 857 - 874
  • [50] HITTING TIMES FOR TRANSIENT RANDOM WALKS ON GROUPS
    PORT, SC
    STONE, CJ
    JOURNAL OF MATHEMATICS AND MECHANICS, 1968, 17 (12): : 1117 - &