Development of a multi-continuum quadruple porosity model to estimate CO2 storage capacity and CO2 enhanced shale gas recovery

被引:18
|
作者
Wu, Minglu [1 ,2 ]
Ding, Mingcai [3 ]
Yao, Jun [1 ,2 ]
Li, Chenfeng [4 ]
Li, Xuan [1 ,2 ]
Zhu, Jiamin [1 ,2 ]
机构
[1] China Univ Petr East China, Minist Educ, Key Lab Unconvent Oil & Gas Dev, Qingdao 266580, Shandong, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Shandong, Peoples R China
[3] Dalian Univ Technol, Sch Math, Dalian 116024, Peoples R China
[4] Swansea Univ, Coll Engn, Bay Campus, Swansea SA1 8EN, W Glam, Wales
基金
中国国家自然科学基金;
关键词
CO2; storage; Enhanced shale gas recovery; Multiple flow mechanisms; Quadruple porosity model; Fractured horizontal well; CARBON-DIOXIDE; SIMULATION; SEQUESTRATION; RESERVOIRS; ADSORPTION; PRESSURE; FLOW;
D O I
10.1016/j.petrol.2019.03.077
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Geologic storage of CO2 in shale formation not only enhances natural gas recovery, but also sequestrates CO2 effectively. According to this technology, a multi-continuum quadruple porosity binary component gas model is developed to investigate carbon dioxide storage capacity and CO2 enhanced shale gas recovery, which is based on multiple flow mechanisms, including dissolution, adsorption/desorption, viscous flow, diffusion, slip flow and stress sensitivity of hydraulic fractures. This fully coupled model is divided into quadruple media, including organic matters, organic pore system, matrix system and natural fracture system. The matrix-fracture transfer flow is simulated by modified multiple interacting continua (MINC) method. Embedded discreate fracture model (EDFM) is introduced to describe the gas flow in hydraulic fractures and the transfer flow between hydraulic fractures and natural fractures. Finite difference method (FDM) and quasi-Newton iterative method are applied to solve this model. The reliability and practicability of this model is validated by matching the production history of a fractured horizontal well in shale gas reservoir. The effects of relevant parameters on production curves are analyzed, including adsorption parameters, dissolution parameters, well production pressure, injection pressure, volumetric fraction of kerogen and injection opportunity. The result shows that the model in this work is reliable and practicable, and the model presented here can be used to investigate the injectivity of CO2 and CO2 enhanced shale gas recovery.
引用
收藏
页码:964 / 974
页数:11
相关论文
共 50 条
  • [21] Effects of CO2 and acid gas injection on enhanced gas recovery and storage
    Khan C.
    Amin R.
    Madden G.
    Journal of Petroleum Exploration and Production Technology, 2013, 3 (01) : 55 - 60
  • [22] The CLEAN project in the context of CO2 storage and enhanced gas recovery
    Michael Kühn
    Uwe-Jens Görke
    Jens T. Birkholzer
    Olaf Kolditz
    Environmental Earth Sciences, 2012, 67 : 307 - 310
  • [23] The CLEAN project in the context of CO2 storage and enhanced gas recovery
    Kuehn, Michael
    Goerke, Uwe-Jens
    Birkholzer, Jens T.
    Kolditz, Olaf
    ENVIRONMENTAL EARTH SCIENCES, 2012, 67 (02) : 307 - 310
  • [24] Enhanced CO2 Gas Storage in Coal
    Hao, Shu-Qing
    Kim, Sungho
    Qin, Yong
    Fu, Xue-Hai
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (51) : 18492 - 18497
  • [25] Evaluation of the role of water-shale-gas reactions on CO2 enhanced shale gas recovery
    Liu, Danqing
    Li, Yilian
    Yang, Sen
    APPLIED ENERGY SYMPOSIUM AND FORUM, CARBON CAPTURE, UTILIZATION AND STORAGE, CCUS 2018, 2018, 154 : 42 - 47
  • [26] CO2 Storage Capacity for Multi-Well Pads Scheme in Depleted Shale Gas Reservoirs
    Meng, Zhan
    Yang, Shenglai
    Wang, Lu
    Zou, Jie
    Jiang, Yun
    Liang, Chenggang
    Wang, Junru
    Zhong, Ziyao
    ENERGIES, 2017, 10 (11):
  • [27] Influence of supercritical CO2 exposure on water wettability of shale: Implications for CO2 sequestration and shale gas recovery
    Qin, Chao
    Jiang, Yongdong
    Zhou, Junping
    Zuo, Shuangying
    Chen, Shiwan
    Liu, Zhengjie
    Yin, Hong
    Li, Ye
    ENERGY, 2022, 242
  • [28] Investigation of CO2-CH4 Displacement and Transport in Shale for Enhanced Shale Gas Recovery and CO2 Sequestration
    Du, Xi-Dong
    Gu, Min
    Duan, Shuo
    Xian, Xue-Fu
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2017, 139 (01):
  • [29] Oil recovery and CO2 storage in CO2 flooding
    Zhao, Hailong
    Chang, Yuwen
    Feng, Songlin
    PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (13) : 1151 - 1156
  • [30] Flue gas CO2 recovery and compression cost study for CO2 enhanced oil recovery
    Iijima, M
    Kamijo, T
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 109 - 114