BLOCKSUM is NP-Complete

被引:7
|
作者
Haraguchi, Kazuya [1 ]
Ono, Hirotaka [2 ]
机构
[1] Ishinomaki Senshu Univ, Fac Sci & Engn, Dept Informat Technol & Elect, Ishinomaki, Miyagi 9868580, Japan
[2] Kyushu Univ, Fac Econ, Dept Econ Engn, Fukuoka 8128581, Japan
关键词
NP-completeness; combinatorial puzzle; Latin square; BLOCKSUM;
D O I
10.1587/transinf.E96.D.481
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
BLOCKSUM, also known as KEISANBLOCK in Japanese, is a Latin square filling type puzzle, such as Sudoku. In this paper, we prove that the decision problem whether a given instance of BLOCKSUM has a solution or not is NP-complete.
引用
收藏
页码:481 / 488
页数:8
相关论文
共 50 条
  • [21] Properties of NP-complete sets
    Glasser, C
    Pavan, A
    Selman, AL
    Sengupta, S
    19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, : 184 - 197
  • [22] CROSSING NUMBER IS NP-COMPLETE
    GAREY, MR
    JOHNSON, DS
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (03): : 312 - 316
  • [23] Entropy for NP-complete problems
    Levchenkov, V.S.
    Doklady Akademii Nauk, 2001, 376 (02) : 175 - 178
  • [24] Chained Block is NP-Complete
    Iwamoto, Chuzo
    Ide, Tatsuya
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (03) : 320 - 324
  • [25] SPLITTING NUMBER is NP-complete
    Faria, L
    de Figueiredo, CMH
    Mendonça, CFX
    DISCRETE APPLIED MATHEMATICS, 2001, 108 (1-2) : 65 - 83
  • [26] The entropy of NP-complete problems
    Levchenkov, VS
    DOKLADY MATHEMATICS, 2001, 63 (01) : 130 - 132
  • [27] Strategic Argumentation is NP-Complete
    Governatori, G.
    Olivieri, F.
    Scannapieco, S.
    Rotolo, A.
    Cristani, M.
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 399 - 404
  • [28] Decidability of NP-Complete Problems
    A. A. Vagis
    A. M. Gupal
    Cybernetics and Systems Analysis, 2022, 58 : 914 - 916
  • [29] Splitting NP-complete sets
    Glasser, Christian
    Pavan, A.
    Selman, Alan L.
    Zhang, Liyu
    SIAM JOURNAL ON COMPUTING, 2008, 37 (05) : 1517 - 1535
  • [30] System BV is NP-complete
    Kahramanogullari, Ozan
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 143 : 87 - 99