Multivariate cumulative probit for age estimation using ordinal categorical data

被引:35
|
作者
Konigsberg, Lyle W. [1 ]
机构
[1] Univ Illinois, Dept Anthropol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Forensic anthropology; Markov chain Monte Carlo; paleodemography; AT-DEATH ESTIMATION; AURICULAR SURFACE; REVISED METHOD; SKELETAL AGE; TRANSITION ANALYSIS; SURVIVAL ANALYSIS; BAYESIAN-APPROACH; TOOTH EMERGENCE; SUCHEY-BROOKS; MORTALITY;
D O I
10.3109/03014460.2015.1045430
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
Background: Multivariate ordinal categorical data have figured prominently in the age estimation literature. Unfortunately, the osteological and dental age estimation literature is often disconnected from the statistical literature that provides the underpinnings for rationale analyses.Aim: The aim of the study is to provide an analytical basis for age estimation using multiple ordinal categorical traits.Subjects and methods: Data on ectocranial suture closure from 1152 individuals are analysed in a multivariate cumulative probit model fit using a Markov Chain Monte Carlo (MCMC) method.Results: Twenty-six parameters in a five variable analysis are estimated, including the 10 unique elements of the fivexfive correlation matrix. The correlation matrix differs substantially from the identity matrix one would assume under conditional independence among the sutures.Conclusion: While the assumption of conditional independence between traits greatly simplifies the use of parametric models in age estimation, this assumption is not a necessary step. Further, in the analysis discussed here there are considerable residual correlations between ectocranial suture closure scores even after regressing out' the effect of age.
引用
收藏
页码:368 / 378
页数:11
相关论文
共 50 条
  • [21] A mixed autoregressive probit model for ordinal longitudinal data
    Varin, Cristiano
    Czado, Claudia
    BIOSTATISTICS, 2010, 11 (01) : 127 - 138
  • [22] Sex estimation: a comparison of techniques based on binary logistic, probit and cumulative probit regression, linear and quadratic discriminant analysis, neural networks, and naïve Bayes classification using ordinal variables
    Efthymia Nikita
    Panos Nikitas
    International Journal of Legal Medicine, 2020, 134 : 1213 - 1225
  • [23] Convex hull test for ordinal categorical data using the SAS® system
    Li, DY
    Xia, HH
    PROCEEDINGS OF THE TWENTY-THIRD ANNUAL SAS USERS GROUP INTERNATIONAL CONFERENCE, 1998, : 991 - 996
  • [24] Instrumental variable estimation in ordinal probit models with mismeasured predictors
    Guan, Jing
    Cheng, Hongjian
    Bollen, Kenneth A.
    Thomas, D. Roland
    Wang, Liqun
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (04): : 653 - 667
  • [25] Advances in Subadult Age Estimation: Evaluating the Performance of the Mixed Cumulative Probit (MCP) on Contemporary Subadults
    Chu, Elaine Y.
    Wolfe, Christopher A.
    Corron, Louise K.
    Price, Michael H.
    Stull, Kyra E.
    AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, 2022, 177 : 32 - 32
  • [26] ANALYSIS OF ORDINAL CATEGORICAL-DATA - AGRESTI,A
    CLOGG, CC
    CONTEMPORARY SOCIOLOGY-A JOURNAL OF REVIEWS, 1985, 14 (03) : 374 - 375
  • [27] ANALYSIS OF ORDINAL CATEGORICAL-DATA - AGRESTI,A
    REHAK, J
    SOCIOLOGICKY CASOPIS, 1986, 22 (06): : 658 - 660
  • [28] MEASURING SOCIAL POLARIZATION WITH ORDINAL AND CATEGORICAL DATA
    Permanyer, Inaki
    D'Ambrosio, Conchita
    JOURNAL OF PUBLIC ECONOMIC THEORY, 2015, 17 (03) : 311 - 327
  • [29] The Assignment of Scores Procedure for Ordinal Categorical Data
    Chen, Han-Ching
    Wang, Nae-Sheng
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [30] Mixed cumulative probit: a multivariate generalization of transition analysis that accommodates variation in the shape, spread and structure of data
    Stull, Kyra E. E.
    Chu, Elaine Y. Y.
    Corron, Louise K. K.
    Price, Michael H. H.
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (03):