An Improved Biogeography Based Optimization for Parameter Estimation of Chaotic Systems

被引:1
|
作者
Wang, Jianan [1 ]
Li, Xiangtao [1 ]
Su, Zhongming [1 ]
机构
[1] NE Normal Univ, Coll Chem, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
Biogeography Based Optimization; Chaotic System; Exploration; Exploitation; Parameter Estimation; DIFFERENTIAL EVOLUTION ALGORITHM; PHASE-TRANSITIONS; PREDICTION; ACCURATE;
D O I
10.1166/jctn.2013.3186
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biogeography based optimization (BBO) is a new evolutionary optimization based on the science of biogeography for global optimization. We propose two extensions to BBO. Firstly, we propose a new migration operation based sinusoidal migration model called improved migration, which is a generalization of the standard BBO migration operator. Secondly, the Gaussian mutation operator is integrated into improved biogeography based optimization (IBBO) to enhance its exploration ability and to improve the diversity of population. Experiments have been conducted on Lorenz system and Chen system. The proposed algorithm is applied to estimate the parameters of these two systems. Simulation results and comparisons demonstrate the proposed IBBO is better or at least comparable to, BBO, particle swarm optimization, and genetic algorithm from literature when considering the quality of the solutions obtained.
引用
收藏
页码:2192 / 2200
页数:9
相关论文
共 50 条
  • [21] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [22] Adaptive artificial bee colony optimization for parameter estimation of chaotic systems
    Ren, Kaijun
    Deng, Kefeng
    Liu, Shaowei
    Song, Junqiang
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2015, 37 (05): : 135 - 140
  • [23] Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
    Oliv, Diego
    Abd El Aziz, Mohamed
    Hassanien, Aboul Ella
    APPLIED ENERGY, 2017, 200 : 141 - 154
  • [24] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822
  • [25] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li, Li-Xiang
    Peng, Hai-Peng
    Yang, Yi-Xian
    Wang, Xiang-Dong
    Wuli Xuebao/Acta Physica Sinica, 2007, 56 (01): : 51 - 55
  • [26] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li Li-Xiang
    Peng Hai-Peng
    Yang Yi-Xian
    Wang Xiang-Dong
    ACTA PHYSICA SINICA, 2007, 56 (01) : 51 - 55
  • [27] On closure parameter estimation in chaotic systems
    Hakkarainen, J.
    Ilin, A.
    Solonen, A.
    Laine, M.
    Haario, H.
    Tamminen, J.
    Oja, E.
    Jarvinen, H.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2012, 19 (01) : 127 - 143
  • [28] ROBUST PARAMETER ESTIMATION OF CHAOTIC SYSTEMS
    Springer, Sebastian
    Haario, Heikki
    Shemyakin, Vladimir
    Kalachev, Leonid
    Shchepakin, Denis
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1189 - 1212
  • [29] PARAMETER ESTIMATION OF STOCHASTIC CHAOTIC SYSTEMS
    Maraia, Ramona
    Springer, Sebastian
    Haario, Heikki
    Hakkarainen, Janne
    Saksman, Eero
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (02) : 49 - 62
  • [30] Parameter estimation of chaotic systems based on extreme value points
    Zhihuan Chen
    Xiaohui Yuan
    Xu Wang
    Yanbin Yuan
    Pramana, 2019, 92