Multi-Instrumental Deep Learning for Automatic Genre Recognition

被引:0
|
作者
Klec, Mariusz [1 ]
机构
[1] Polish Japanese Acad Informat Technol, Multimedia Dept, Warsaw, Poland
关键词
RBM; Deep neural network; Automatic genre recognition; Unsupervised Pre-training; Neural networks; Music information retrieval;
D O I
10.1007/978-3-319-31277-4_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The experiments described in this paper utilize songs in the MIDI format to train Deep Neural Networks (DNNs) for the Automatic Genre Recognition (AGR) problem. The MIDI songs were decomposed into separate instrument groups and converted to audio. Restricted Boltzmann Machines (RBMs) were trained with the individual groups of instruments as a method of pre-training of the final DNN models. The Scattering Wavelet Transform (SWT) was used for signal representation. The paper explains the basics of RBMs and the SWT, followed by a review of DNN pre-training methods that use separate instrument audio. Experiments show that this approach allows building better discriminating models than those that were trained using whole songs.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 50 条
  • [21] Multi-Instrumental Analysis Toward Exploring the Diabetic Foot Infection Microbiota
    Michał Złoch
    Ewelina Maślak
    Wojciech Kupczyk
    Paweł Pomastowski
    Current Microbiology, 2023, 80
  • [22] Music Genre Recognition using Deep Neural Networks and Transfer Learning
    Ghosal, Deepanway
    Kolekar, Maheshkumar H.
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2087 - 2091
  • [23] Multi-instrumental analysis of large sprite events and their producing storm in southern France
    Soula, S.
    Iacovella, F.
    van der Velde, O.
    Montanya, J.
    Fuellekrug, M.
    Farges, T.
    Bor, J.
    Georgis, J. -F.
    NaitAmor, S.
    Martin, J-M
    ATMOSPHERIC RESEARCH, 2014, 135 : 415 - 431
  • [24] Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach
    Segura, S.
    Estelles, V.
    Titos, G.
    Lyamani, H.
    Utrillas, M. P.
    Zotter, P.
    Prevot, A. S. H.
    Mocnik, G.
    Alados-Arboledas, L.
    Martinez-Lozano, J. A.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (08) : 2373 - 2387
  • [25] Multi-instrumental analyses of the September 2017 space weather storm over Brazil
    Damaceno, Juliana G.
    Cesaroni, Claudio
    Spogli, Luca
    De Franceschi, Giorgiana
    Cafaro, Massimo
    2019 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (AP-RASC), 2019,
  • [26] Speciation of gold(III)-L-histidine complex: a multi-instrumental approach
    Cuadrado, JA
    Zhang, WX
    Hang, W
    Majidi, V
    JOURNAL OF ENVIRONMENTAL MONITORING, 2000, 2 (04): : 355 - 359
  • [27] Deep Learning Aided Method for Automatic Modulation Recognition
    Yang, Cheng
    He, Zhimin
    Peng, Yang
    Wang, Yu
    Yang, Jie
    IEEE ACCESS, 2019, 7 : 109063 - 109068
  • [28] Automatic Shuttlecock Motion Recognition Using Deep Learning
    Zhao, Yongkang
    IEEE ACCESS, 2023, 11 : 111281 - 111291
  • [29] Automatic Fungi Recognition: Deep Learning Meets Mycology
    Picek, Lukas
    Sulc, Milan
    Matas, Jiri
    Heilmann-Clausen, Jacob
    Jeppesen, Thomas S.
    Lind, Emil
    SENSORS, 2022, 22 (02)
  • [30] Deep Learning for Radar and Communications Automatic Target Recognition
    Roberg, Michael
    MICROWAVE JOURNAL, 2022, 65 (06) : 86 - 86