Multi-Instrumental Deep Learning for Automatic Genre Recognition

被引:0
|
作者
Klec, Mariusz [1 ]
机构
[1] Polish Japanese Acad Informat Technol, Multimedia Dept, Warsaw, Poland
关键词
RBM; Deep neural network; Automatic genre recognition; Unsupervised Pre-training; Neural networks; Music information retrieval;
D O I
10.1007/978-3-319-31277-4_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The experiments described in this paper utilize songs in the MIDI format to train Deep Neural Networks (DNNs) for the Automatic Genre Recognition (AGR) problem. The MIDI songs were decomposed into separate instrument groups and converted to audio. Restricted Boltzmann Machines (RBMs) were trained with the individual groups of instruments as a method of pre-training of the final DNN models. The Scattering Wavelet Transform (SWT) was used for signal representation. The paper explains the basics of RBMs and the SWT, followed by a review of DNN pre-training methods that use separate instrument audio. Experiments show that this approach allows building better discriminating models than those that were trained using whole songs.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 50 条
  • [1] Multi-instrumental View of the Auroral Oval
    Yaysukevich, Yu
    Astafyeva, E.
    Oinats, A.
    Vesnin, A.
    Yasyukevich, A.
    Vasiliev, A.
    Garashchenko, A.
    Sidorov, D.
    2022 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2022), 2022, : 1009 - 1013
  • [2] Multi-Instrumental Observations of Nonunderdense Meteor Trails
    Kozlovsky, A.
    Shalimov, S.
    Kero, J.
    Raita, T.
    Lester, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (07) : 5974 - 5989
  • [3] MULTI-INSTRUMENTAL ANALYSIS OF ASPHALTS OF ARCHAEOLOGICAL INTEREST
    Lombardi, G.
    Santarelli, Maria Laura
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2009, 96 (02) : 541 - 546
  • [4] The Use of Multi-instrumental Approach to Teaching Physics
    Nemec, Radek
    Sramek, Filip
    Berkova, Andrea
    20TH INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, COMMUNICATIONS AND COMPUTERS (CSCC 2016), 2016, 76
  • [5] Multi-instrumental analysis of asphalts of archaeological interest
    G. Lombardi
    Maria Laura Santarelli
    Journal of Thermal Analysis and Calorimetry, 2009, 96 : 541 - 546
  • [6] Composing Multi-Instrumental Music with Recurrent Neural Networks
    Samuel, David
    Pilat, Martin
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [7] Multi-instrumental detection of a fireball during Leonids of 2019
    Szarnya, Cs.
    Chum, J.
    Podolska, K.
    Kouba, D.
    Knizova, P. Koucka
    Mosna, Z.
    Barta, V.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
  • [8] Multi-instrumental observations of the 2014 Ursid meteor outburst
    Moreno-Ibanez, Manuel
    Trigo-Rodriguez, Josep M.
    Madiedo, Jose Maria
    Vaubaillon, Jeremie
    Williams, Iwan P.
    Gritsevich, Maria
    Morillas, Lorenzo G.
    Blanch, Estefania
    Pujols, Pep
    Colas, Francois
    Dupouy, Philippe
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (02) : 2206 - 2213
  • [9] MULTI-INSTRUMENTAL IDENTIFICATION OF ORPIMENT IN ARCHAEOLOGICAL MORTUARY CONTEXTS
    Pablo Ogalde, Juan
    Salas, Cristian O.
    Lara, Nelson
    Leyton, Patricio
    Paipa, Carolina
    Campos-Vallette, Marcelo
    Arriaza, Bernardo
    JOURNAL OF THE CHILEAN CHEMICAL SOCIETY, 2014, 59 (03): : 2571 - 2573
  • [10] Deep Learning for Automatic Ordnance Recognition
    Ward, Chris M.
    Harguess, Josh
    Hilton, Cameron
    Mediavilla, Chelsea
    Sullivan, Keith
    Watkins, Rick
    GEOSPATIAL INFORMATICS IX, 2019, 10992