Upper bounds for geodesic periods over hyperbolic manifolds

被引:1
|
作者
Su, Feng [1 ]
机构
[1] Chinese Acad Sci, AMSS, Inst Math, Beijing 100190, Peoples R China
关键词
Geodesic period; Maass form; hyperbolic manifold; AUTOMORPHIC-FORMS; EIGENFUNCTIONS; RESTRICTION; VALUES; CYCLES;
D O I
10.1142/S0129167X1850009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an upper bound for geodesic periods of Maass forms over hyperbolic manifolds. By definition, such periods are integrals of Maass forms restricted to a special geodesic cycle of the ambient manifold, against a Maass form on the cycle. Under certain restrictions, the bound will be uniform.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Local rigidity of hyperbolic manifolds with geodesic boundary
    Kerckhoff, Steven P.
    Storm, Peter A.
    JOURNAL OF TOPOLOGY, 2012, 5 (04) : 757 - 784
  • [22] Hyperbolic Volume of Manifolds with Geodesic Boundary and Orthospectra
    Martin Bridgeman
    Jeremy Kahn
    Geometric and Functional Analysis, 2010, 20 : 1210 - 1230
  • [23] The simplicial volume of hyperbolic manifolds with geodesic boundary
    Frigerio, Roberto
    Pagliantini, Cristina
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (02): : 979 - 1001
  • [24] Hyperbolic Volume of Manifolds with Geodesic Boundary and Orthospectra
    Bridgeman, Martin
    Kahn, Jeremy
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (05) : 1210 - 1230
  • [25] POWER SPECTRUM OF THE GEODESIC FLOW ON HYPERBOLIC MANIFOLDS
    Dyatlov, Semyon
    Faure, Frederic
    Guillarmou, Colin
    ANALYSIS & PDE, 2015, 8 (04): : 923 - 1000
  • [26] Volume of geodesic spheres in manifolds of hyperbolic type
    Ogouyandjou, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05): : 419 - 424
  • [27] Geodesic planes in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Inventiones mathematicae, 2017, 209 : 425 - 461
  • [28] Geodesic planes in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    INVENTIONES MATHEMATICAE, 2017, 209 (02) : 425 - 461
  • [29] GEODESIC-FLOW ON MANIFOLDS OF HYPERBOLIC TYPE
    CHRISTOPHORIDOU, C
    ARCHIV DER MATHEMATIK, 1988, 51 (03) : 247 - 254
  • [30] Bounds for fixed points on hyperbolic manifolds
    Zhang, Qiang
    TOPOLOGY AND ITS APPLICATIONS, 2015, 185 : 80 - 87