Data Model LUT based Change and Anomaly Detection for Real-Time Multispectral Image Characterization

被引:0
|
作者
Jaenisch, Holger [1 ]
Handley, James [2 ]
机构
[1] Johns Hopkins Univ, Zanvyl Krieger Sch, Baltimore, MD 21218 USA
[2] Licht Strahl Engn INC, Birmingham, AL 35773 USA
关键词
Data Modeling; FMV; smart camera; micro UAV; Change Detection; multispectral;
D O I
10.1117/12.915176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method for partitioning a multispectral image into fixed size look-up tables (LUTs) that are dynamically updated for presence or absence of simple distribution characterizing features of the sub-frames they represent. If the features have been previously observed, the sub-frame is recognized and no update occurs, if not the table is updated and a suitable anomaly reported. Our method enables dynamic change detection to occur at multiple wavelengths independently by creating suitable LUTs for each wavelength band. Details of our approach are presented.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] An ARIMA Based Real-time Monitoring and Warning Algorithm for the Anomaly Detection
    Zeng, Jia
    Zhang, Lei
    Shi, Gaotao
    Liu, Tiegen
    Liu, Kun
    2017 IEEE 23RD INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2017, : 469 - 476
  • [42] RAPID: Real-time Anomaly-based Preventive Intrusion Detection
    Doshi, Keval
    Mozaffari, Mahsa
    Yilmaz, Yasin
    PROCEEDINGS OF THE 2019 ACM WORKSHOP ON WIRELESS SECURITY AND MACHINE LEARNING (WISEML '19), 2019, : 49 - 54
  • [43] A real-time network based anomaly detection in industrial control systems
    Zare, Faeze
    Mahmoudi-Nasr, Payam
    Yousefpour, Rohollah
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION, 2024, 45
  • [44] Robust Anomaly Detection Algorithms for Real-time Big Data Comparison of algorithms
    Hasani, Zirije
    2017 6TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2017, : 449 - 454
  • [45] Anomaly Detection and Approximate Similarity Searches of Transients in Real-time Data Streams
    Aleo, P. D.
    Engel, A. W.
    Narayan, G.
    Angus, C. R.
    Malanchev, K.
    Auchettl, K.
    Baldassare, V. F.
    Berres, A.
    de Boer, T. J. L.
    Boyd, B. M.
    Chambers, K. C.
    Davis, K. W.
    Esquivel, N.
    Farias, D.
    Foley, R. J.
    Gagliano, A.
    Gall, C.
    Gao, H.
    Gomez, S.
    Grayling, M.
    Jones, D. O.
    Lin, C. -C.
    Magnier, E. A.
    Mandel, K. S.
    Matheson, T.
    Raimundo, S. I.
    Shah, V. G.
    Soraisam, M. D.
    de Soto, K. M.
    Vicencio, S.
    Villar, V. A.
    Wainscoat, R. J.
    ASTROPHYSICAL JOURNAL, 2024, 974 (02):
  • [46] Real-time Road Anomaly Detection, Using an on-board Data Logger
    Hameed, Hadia
    Mazhar, Suleman
    Hassan, Naufil
    2018 IEEE 87TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2018,
  • [47] Processing of massive audit data streams for real-time anomaly intrusion detection
    Wang, Wei
    Guan, Xiaohong
    Zhang, Xiangliang
    COMPUTER COMMUNICATIONS, 2008, 31 (01) : 58 - 72
  • [48] Machine Tools Anomaly Detection Through Nearly Real-Time Data Analysis
    Herranz, Gorka
    Antolinez, Alfonso
    Escartin, Javier
    Arregi, Amaia
    Kepa Gerrikagoitia, Jon
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2019, 3 (04):
  • [49] BRNADS: Big data Real-Time Node Anomaly Detection in Social Networks
    Manjunatha, H. C.
    Mohanasundaram, R.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2018), 2018, : 929 - 932
  • [50] Edge Computing Application: Real-Time Anomaly Detection Algorithm for Sensing Data
    Zhang Q.
    Hu Y.
    Ji C.
    Zhan P.
    Li X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2018, 55 (03): : 524 - 536