Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

被引:54
|
作者
Jiang, F. [1 ,2 ]
Wang, H. W. [1 ,2 ]
Chen, J. M. [1 ,2 ,6 ,7 ]
Zhou, L. X. [3 ]
Ju, W. M. [1 ,2 ]
Ding, A. J. [4 ,5 ]
Liu, L. X. [3 ]
Peters, W. [8 ]
机构
[1] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210008, Jiangsu, Peoples R China
[2] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210008, Jiangsu, Peoples R China
[3] CAMS, CMA, Beijing, Peoples R China
[4] Nanjing Univ, Inst Climate & Global Change Res, Nanjing 210008, Jiangsu, Peoples R China
[5] Nanjing Univ, Sch Atmospher Sci, Nanjing 210008, Jiangsu, Peoples R China
[6] Univ Toronto, Dept Geog, Toronto, ON M5S 1A1, Canada
[7] Univ Toronto, Program Planning, Toronto, ON, Canada
[8] Wageningen Univ, Dept Meteorol & Air Qual, NL-6700 AP Wageningen, Netherlands
基金
中国国家自然科学基金;
关键词
NET PRIMARY PRODUCTION; DIOXIDE EXCHANGE; FLUX INVERSION; CO2; SOURCES; TRANSPORT; MODEL; EMISSIONS; SENSITIVITY; VEGETATION; RESOLUTION;
D O I
10.5194/bg-10-5311-2013
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3 degrees x 2 degrees. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV) of the land sinks shows remarkable correlation with the El Nino Southern Oscillation (ENSO). The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002-2008 are -3.20 +/- 0.63 and -0.28 +/- 0.18 PgC yr(-1), respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs) and from the import of wood and food, we further estimate that China's land sink is about -0.31 PgC yr(-1).
引用
收藏
页码:5311 / 5324
页数:14
相关论文
共 50 条
  • [21] Terrestrial vegetation carbon sinks in China, 1981-2000
    Fang JingYun
    Guo ZhaoDi
    Piao ShiLong
    Chen AnPing
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2007, 50 (09): : 1341 - 1350
  • [22] The spatial distribution of forest carbon sinks and sources in China
    LIU ShuangNa 1
    2 Academy of Disaster Reduction and Emergency Management
    3 Key Laboratory of Environmental Change and Natural Disaster
    Science Bulletin, 2012, (14) : 1699 - 1707
  • [23] The spatial distribution of forest carbon sinks and sources in China
    LIU ShuangNa ZHOU Tao WEI LinYan SHU Yang State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijing China Academy of Disaster Reduction and Emergency ManagementMinistry of Civil Affairs and Ministry of EducationBeijing China Key Laboratory of Environmental Change and Natural DisasterBeijing China
    Chinese Science Bulletin, 2012, 57 (14) : 1699 - 1707
  • [24] SOURCES AND SINKS OF ATMOSPHERIC METHANE
    EHHALT, DH
    SCHMIDT, U
    PURE AND APPLIED GEOPHYSICS, 1978, 116 (2-3) : 452 - 464
  • [25] The spatial distribution of forest carbon sinks and sources in China
    Liu ShuangNa
    Zhou Tao
    Wei LinYan
    Shu Yang
    CHINESE SCIENCE BULLETIN, 2012, 57 (14): : 1699 - 1707
  • [26] Quantifying Terrestrial Carbon Sinks
    Climatic Change, 2004, 67 : 145 - 146
  • [27] National Inventories of Terrestrial Carbon Sources and Sinks: The U.K. Experience
    M. G. R. Cannell
    R. Milne
    K. J. Hargreaves
    T. A. W. Brown
    M. M. Cruickshank
    R. I. Bradley
    T. Spencer
    D. Hope
    M. F. Billett
    W. N. Adger
    S. Subak
    Climatic Change, 1999, 42 : 505 - 530
  • [28] Sources, Sinks, and Subsidies: Terrestrial Carbon Storage in Mid-latitude Fjords
    Smeaton, Craig
    Austin, William E. N.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2017, 122 (11) : 2754 - 2768
  • [29] Factoring out natural and indirect human effects on terrestrial carbon sources and sinks
    Canadell, Josep G.
    Kirschbaum, Miko U. F.
    Kurz, Werner A.
    Sanz, Maria-Jose
    Schlamadinger, Bernhard
    Yamagata, Yoshiki
    ENVIRONMENTAL SCIENCE & POLICY, 2007, 10 (04) : 370 - 384
  • [30] Trends and Drivers of Terrestrial Sources and Sinks of Carbon Dioxide: An Overview of the TRENDY Project
    Sitch, Stephen
    O'Sullivan, Michael
    Robertson, Eddy
    Friedlingstein, Pierre
    Albergel, Clement
    Anthoni, Peter
    Arneth, Almut
    Arora, Vivek K.
    Bastos, Ana
    Bastrikov, Vladislav
    Bellouin, Nicolas
    Canadell, Josep G.
    Chini, Louise
    Ciais, Philippe
    Falk, Stefanie
    Harris, Ian
    Hurtt, George
    Ito, Akihiko
    Jain, Atul K.
    Jones, Matthew W.
    Joos, Fortunat
    Kato, Etsushi
    Kennedy, Daniel
    Goldewijk, Kees Klein
    Kluzek, Erik
    Knauer, Jurgen
    Lawrence, Peter J.
    Lombardozzi, Danica
    Melton, Joe R.
    Nabel, Julia E. M. S.
    Pan, Naiqing
    Peylin, Philippe
    Pongratz, Julia
    Poulter, Benjamin
    Rosan, Thais M.
    Sun, Qing
    Tian, Hanqin
    Walker, Anthony P.
    Weber, Ulrich
    Yuan, Wenping
    Yue, Xu
    Zaehle, Soenke
    GLOBAL BIOGEOCHEMICAL CYCLES, 2024, 38 (07)