Identification of geometric parameters of drawbead in metal forming processes

被引:6
|
作者
Han, LF
Li, GY
Han, X [1 ]
Zhong, ZH
机构
[1] Hunan Univ, Key Lab Minist Educ, Changsha 410082, Peoples R China
[2] Xiangtan Univ, Coll Mech Engn, Xiangtan 411105, Peoples R China
关键词
drawbead; neural network; genetic algorithm; inverse problem; computational inverse technique;
D O I
10.1080/17415970500397101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A computational inverse technique is presented for identification of geometric parameters of drawbead in sheet forming processes. The explicit dynamic finite element method (FEM) is employed as the forward solver to calculate the maximal effective stress, maximal effective strain and maximal thinning ratio of sheet thickness for known drawbead geometric parameters. A neural network (NN) is adopted as the inverse operator to determine the geometric parameters of circular drawbead. A sample design method with the strategy of updating training sample set is developed for the fast convergence in the training process of NN model. Once the training sample set is updated, the NN structure will be optimized using the genetic algorithm (GA). The numerical examples are presented to demonstrate the efficiency of the technique.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
  • [21] Effect of drawbead on forming performance of subsequent sheet
    Li Qun
    Guo Bao-feng
    Jin Miao
    Sun Cheng-li
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2008, 15 (Suppl 2): : 301 - 305
  • [22] Analysis of forming limits in metal forming processes
    Huang, You-Min
    Tsai, Yi-Wei
    Li, Ching-Lun
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 201 (1-3) : 385 - 389
  • [23] Two stage identification approach of material model parameters for forming thermomechanical processes
    Sztangret, Lukasz
    Szeliga, Danuta
    MATERIALS AND MANUFACTURING PROCESSES, 2020, 35 (06) : 658 - 662
  • [24] The prospects of implementation of artificial intelligence for modelling of microstructural parameters in metal forming processes
    Tretyakov, Denis
    Bylya, Olga
    Shitikov, Andrei
    Gartvig, Artur
    Stebunov, Sergey
    Biba, Nikolay
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 2164 - 2173
  • [25] Test of Friction Parameters in Bulk Metal Forming Based on Forward Extrusion Processes
    Chen X.
    Wen T.
    Liu K.
    Hong Y.
    Wen, Tong (wentong@cqu.edu.cn), 1600, Shanghai Jiaotong University (25): : 333 - 339
  • [26] Equivalent drawbead models for sheet forming simulation
    S. J. Moon
    M. G. Lee
    S. H. Lee
    Y. T. Keum
    Metals and Materials International, 2010, 16 : 595 - 603
  • [27] Tribology in Metal Forming Processes
    Nakamura, Tamotsu
    Toraibarojisuto/Journal of Japanese Society of Tribologists, 2009, 54 (02): : 79 - 84
  • [28] Application of Artificial Neural Networks to the Analysis of Friction Behaviour in a Drawbead Profile in Sheet Metal Forming
    Trzepiecinski, Tomasz
    Najm, Sherwan Mohammed
    MATERIALS, 2022, 15 (24)
  • [29] TESTING OF METAL FORMING PROCESSES
    HONNENS, H
    WERKSTATTSTECHNIK ZEITSCHRIFT FUR INDUSTRIELLE FERTIGUNG, 1971, 61 (06): : 344 - &
  • [30] Tribology in Metal Forming Processes
    Nakamura, Tamotsu
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2009, 54 (02) : 79 - 84