In silico modeling to predict drug-induced phospholipidosis
被引:18
|
作者:
Choi, Sydney S.
论文数: 0引用数: 0
h-index: 0
机构:
US FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USAUS FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA
Choi, Sydney S.
[1
]
Kim, Jae S.
论文数: 0引用数: 0
h-index: 0
机构:
US FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USAUS FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA
Kim, Jae S.
[1
]
Valerio, Luis G., Jr.
论文数: 0引用数: 0
h-index: 0
机构:
US FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USAUS FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA
Valerio, Luis G., Jr.
[1
]
Sadrieh, Nakissa
论文数: 0引用数: 0
h-index: 0
机构:
US FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USAUS FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA
Sadrieh, Nakissa
[1
]
机构:
[1] US FDA, Off Pharmaceut Sci, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA
Phospholipidosis;
Drug safety;
In silico toxicology;
CLASSIFICATION;
CONSTRUCTION;
AGREEMENT;
INDUCTION;
RAT;
D O I:
10.1016/j.taap.2013.03.010
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure-activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset The results of our modeling for DIPL include rigorous external validation tests showing 80-81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above >= 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. Published by Elsevier Inc.
机构:
Univ Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South Korea
Lee, Ji-Young
Han, Hyo-Jeong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South Korea
Han, Hyo-Jeong
Lee, Sang-Joon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South Korea
Lee, Sang-Joon
Cho, Eun-Ho
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South Korea
Cho, Eun-Ho
Lee, Han-Byul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South Korea
Lee, Han-Byul
Seok, Ju-Hyung
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South Korea
Seok, Ju-Hyung
Lim, Hee Seon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Inst Convergence Sci & Technol, Dept Med Sci,Asan Med Ctr, Seoul 05505, South Korea