Floating topological phases

被引:1
|
作者
Devakul, Trithep [1 ]
Sondhi, S. L. [1 ]
Kivelson, S. A. [2 ]
Berg, Erez [3 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Weizmann Inst Sci, Dept Phys, IL-76100 Rehovot, Israel
基金
欧洲研究理事会;
关键词
MULTIPLE-QUANTUM-WELL; LATTICE GAUGE-THEORY; VALENCE BOND STATE; HALL STATES; FIELD; SUPERCONDUCTORS; FLUCTUATIONS; CONFINEMENT; TRANSITIONS; TRANSPORT;
D O I
10.1103/PhysRevB.102.125136
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
While quasi-two-dimensional (layered) materials can be highly anisotropic, their asymptotic long-distance behavior generally reflects the properties of a fully three-dimensional phase of matter. However, certain topologically ordered quantum phases with an emergent (2 + 1)-dimensional gauge symmetry can be asymptotically impervious to interplane couplings. We discuss the stability of such "floating topological phases," as well as their diagnosis by means of a nonlocal order parameter. Such a phase can produce a divergent ratio rho(perpendicular to)/rho(parallel to) of the interlayer to intralayer resistivity as T -> 0, even in an insulator where both rho(perpendicular to) and rho(parallel to) individually diverge. Experimental observation of such a divergence would constitute proof of the existence of a topological (e.g., spin-liquid) phase.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Topological phases and quasiparticle braiding
    Read, Nicholas
    PHYSICS TODAY, 2012, 65 (07) : 38 - 43
  • [32] Arboreal topological and fracton phases
    Manoj, Nandagopal
    Shenoy, Vijay B.
    PHYSICAL REVIEW B, 2023, 107 (16)
  • [33] Photonic quadrupole topological phases
    Sunil Mittal
    Venkata Vikram Orre
    Guanyu Zhu
    Maxim A. Gorlach
    Alexander Poddubny
    Mohammad Hafezi
    Nature Photonics, 2019, 13 : 692 - 696
  • [34] Topological phases of inhomogeneous superconductivity
    Hoffman, Silas
    Klinovaja, Jelena
    Loss, Daniel
    PHYSICAL REVIEW B, 2016, 93 (16)
  • [35] Topological Phases of Sound and Light
    Peano, V.
    Brendel, C.
    Schmidt, M.
    Marquardt, F.
    PHYSICAL REVIEW X, 2015, 5 (03):
  • [36] Coarse Geometry and Topological Phases
    Ewert, Eske Ellen
    Meyer, Ralf
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (03) : 1069 - 1098
  • [37] Topological properties of geometric phases
    Fujikawa, Kazuo
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (164): : 194 - 202
  • [38] Resilience of the topological phases to frustration
    Vanja Marić
    Fabio Franchini
    Domagoj Kuić
    Salvatore Marco Giampaolo
    Scientific Reports, 11
  • [39] Resilience of the topological phases to frustration
    Maric, Vanja
    Franchini, Fabio
    Kuic, Domagoj
    Giampaolo, Salvatore Marco
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] Topological phases of eternal inflation
    Sekino, Yasuhiro
    Shenker, Stephen
    Susskind, Leonard
    PHYSICAL REVIEW D, 2010, 81 (12):