Semantic Forward Propagation for Symbolic Regression

被引:6
|
作者
Szubert, Marcin [1 ]
Kodali, Anuradha [2 ,3 ]
Ganguly, Sangram [3 ,4 ]
Das, Kamalika [2 ,3 ]
Bongard, Josh C. [1 ]
机构
[1] Univ Vermont, Burlington, VT 05405 USA
[2] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[3] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[4] Bay Area Environm Res Inst, Petaluma, CA 94952 USA
关键词
Genetic programming; Program semantics; Semantic backpropagation; Problem decomposition; Symbolic regression;
D O I
10.1007/978-3-319-45823-6_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, a number of methods have been proposed that attempt to improve the performance of genetic programming by exploiting information about program semantics. One of the most important developments in this area is semantic backpropagation. The key idea of this method is to decompose a program into two parts-a subprogram and a context-and calculate the desired semantics of the subprogram that would make the entire program correct, assuming that the context remains unchanged. In this paper we introduce Forward Propagation Mutation, a novel operator that relies on the opposite assumption-instead of preserving the context, it retains the subprogram and attempts to place it in the semantically right context. We empirically compare the performance of semantic backpropagation and forward propagation operators on a set of symbolic regression benchmarks. The experimental results demonstrate that semantic forward propagation produces smaller programs that achieve significantly higher generalization performance.
引用
收藏
页码:364 / 374
页数:11
相关论文
共 50 条
  • [41] Controller design by symbolic regression
    Danai, Kourosh
    La Cava, William G.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151
  • [42] Explaining Symbolic Regression Predictions
    Filho, Renato Miranda
    Lacerda, Anisio
    Pappa, Gisele L.
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [43] SYMBOLIC REGRESSION OF DETERMINISTIC CHAOS
    Brandejsky, Tomas
    MENDEL 2011 - 17TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, 2011, : 90 - 93
  • [44] Controllable Neural Symbolic Regression
    Bendinelli, Tommaso
    Biggio, Luca
    Kamienny, Pierre-Alexandre
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [45] Simulated Annealing for Symbolic Regression
    Kantor, Daniel
    Von Zuben, Fernando J.
    de Franca, Fabricio Olivetti
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 592 - 599
  • [46] SYMBOLIC REGRESSION OF IMPLICIT EQUATIONS
    Schmidt, Michael
    Lipson, Hod
    GENETIC PROGRAMMING THEORY AND PRACTICE VII, 2010, : 73 - +
  • [47] Symbolic regression in materials science
    Yiqun Wang
    Nicholas Wagner
    James M. Rondinelli
    MRS Communications, 2019, 9 : 793 - 805
  • [48] Multi Objective Symbolic Regression
    Hinde, C. J.
    Chakravorti, N.
    West, A. A.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 513 : 481 - 494
  • [49] SPINEX-symbolic regression: similarity-based symbolic regression with explainable neighbors exploration
    Naser, M. Z.
    Naser, Ahmad Z.
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (05):
  • [50] Symbolic analysis via semantic reinterpretation
    Lim J.
    Lal A.
    Reps T.
    International Journal on Software Tools for Technology Transfer, 2011, 13 (1) : 61 - 87