Studies of the Helicon Plasma Source with Inhomogeneous Magnetic Field

被引:3
|
作者
Shikhvotsev, I. V. [1 ,2 ]
Davydenko, V. I. [1 ,2 ]
Ivanov, A. A. [1 ,2 ]
Kotelnikov, I. A. [1 ,2 ]
Kuzmin, E. I. [1 ,2 ]
Kreter, A. [1 ,3 ]
Mishagin, V. V. [1 ]
Selivanov, A. N. [1 ]
Selivanov, P. A. [1 ]
Voskoboynikov, R. V. [1 ,2 ]
Unterberg, B. [1 ,3 ]
Karelin, V. A. [1 ]
Bambutsa, E. E. [1 ]
机构
[1] RAS, SB, Budker Inst Nucl Phys, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
[3] FZ Juelich, Julich, Germany
基金
俄罗斯科学基金会;
关键词
D O I
10.1063/1.4964230
中图分类号
O59 [应用物理学];
学科分类号
摘要
The development of fusion facilities urges a search for materials resilient to plasma interaction. For simulations of plasma-material interaction a source of steady-state plasma is needed with sufficiently large plasma density at the level of 10(13) cm(-3) at least. A helicon plasma source was developed at the Budker Institute of Nuclear Physics SB RAS as a prototype of a powerful plasma source for future use in linear plasma devices for simulation of plasma-material interaction. Using Nagoya-type-III antenna hydrogen plasma is produced at 13.56 MHz frequency and with RF power up to 5 kW inside a quartz discharge chamber of 108 mm outer diameter and 400 mm axial length. Five coils installed outside the discharge chamber produce the magnetic field with two maxima at the ends of the chamber. The efficiency of the plasma production and the plasma density distribution are very sensitive to the geometry and strength of the magnetic field. In this paper, the results of the measurements of radial plasma density profiles and the electron temperature are presented. Their dependence upon the RF power, magnetic field geometry and strength, and gas pressure is discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] The study of helicon plasma source
    Miao, Ting-Ting
    Zhao, Hong-Wei
    Liu, Zhan-Wen
    Shang, Yong
    Sun, Liang-Ting
    Zhang, Xue-Zhen
    Zhao, Huan-Yu
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (02):
  • [32] Modeling of a helicon plasma source
    Bose, D
    Govindan, TR
    Meyyappan, M
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2003, 31 (04) : 464 - 470
  • [33] Modeling of a helicon plasma source
    Batishchev, O
    Molvig, K
    PPPS-2001: PULSED POWER PLASMA SCIENCE 2001, VOLS I AND II, DIGEST OF TECHNICAL PAPERS, 2001, : 114 - 117
  • [34] Observation of low magnetic field density peaks in helicon plasma
    Barada, Kshitish K.
    Chattopadhyay, P. K.
    Ghosh, J.
    Kumar, Sunil
    Saxena, Y. C.
    PHYSICS OF PLASMAS, 2013, 20 (04)
  • [35] Electrostatic acceleration of helicon plasma using a cusped magnetic field
    Harada, S.
    Baba, T.
    Uchigashima, A.
    Yokota, S.
    Iwakawa, A.
    Sasoh, A.
    Yamazaki, T.
    Shimizu, H.
    APPLIED PHYSICS LETTERS, 2014, 105 (19)
  • [36] Effect of magnetic field on double layer in argon helicon plasma
    Yang, Kaiyi
    Cui, Ruilin
    Zhu, Wanying
    Wu, Zhiwen
    Ouyang, Jiting
    HIGH VOLTAGE, 2021, 6 (02) : 358 - 365
  • [37] A linear helicon plasma device with controllable magnetic field gradient
    Barada, Kshitish K.
    Chattopadhyay, P. K.
    Ghosh, J.
    Kumar, Sunil
    Saxena, Y. C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (06):
  • [38] Two density peaks in low magnetic field helicon plasma
    Wang, Y.
    Zhao, G.
    Liu, Z. W.
    Ouyang, J. T.
    Chen, Q.
    PHYSICS OF PLASMAS, 2015, 22 (09)
  • [39] RESONANT RF ELECTROMAGNETIC FIELD INPUT IN THE HELICON PLASMA ION SOURCE
    Alexenko, O. V.
    Miroshnichenko, V. I.
    Mordik, S. N.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2014, (05): : 153 - 160
  • [40] Development of a helicon-wave excited plasma facility with high magnetic field for plasma-wall interactions studies
    Zhang, Guilu
    Huang, Tianyuan
    Jin, Chenggang
    Wu, Xuemei
    Zhuge, Lanjian
    Ji, Hantao
    PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (08)