Emergence of H7N9 Influenza A Virus Resistant to Neuraminidase Inhibitors in Nonhuman Primates

被引:38
|
作者
Itoh, Yasushi [1 ]
Shichinohe, Shintaro [1 ,2 ]
Nakayama, Misako [1 ]
Igarashi, Manabu [3 ,4 ]
Ishii, Akihiro [3 ]
Ishigaki, Hirohito [1 ]
Ishida, Hideaki [1 ]
Kitagawa, Naoko [1 ]
Sasamura, Takako [1 ]
Shiohara, Masanori [1 ]
Doi, Michiko [1 ]
Tsuchiya, Hideaki [5 ]
Nakamura, Shinichiro [5 ]
Okamatsu, Masatoshi [2 ]
Sakoda, Yoshihiro [2 ,4 ]
Kida, Hiroshi [2 ,3 ,4 ]
Ogasawara, Kazumasa [1 ,5 ]
机构
[1] Shiga Univ Med Sci, Dept Pathol, Div Pathol & Dis Regulat, Otsu, Shiga 52021, Japan
[2] Hokkaido Univ, Microbiol Lab, Dept Dis Control, Grad Sch Vet Med, Sapporo, Hokkaido, Japan
[3] Hokkaido Univ, Res Ctr Zoonosis Control, Sapporo, Hokkaido, Japan
[4] Hokkaido Univ, Global Inst Collaborat Res & Educ GI CoRE, Sapporo, Hokkaido, Japan
[5] Shiga Univ Med Sci, Res Ctr Anim Life Sci, Otsu, Shiga 52021, Japan
基金
日本科学技术振兴机构;
关键词
PATHOGENIC AVIAN INFLUENZA; OSELTAMIVIR RESISTANCE; RECEPTOR-BINDING; PROTECTS MICE; A(H7N9) VIRUS; VACCINE; INFECTION; DRUG; PERAMIVIR; MUTATION;
D O I
10.1128/AAC.00793-15
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The number of patients infected with H7N9 influenza virus has been increasing since 2013. We examined the efficacy of neuraminidase (NA) inhibitors and the efficacy of a vaccine against an H7N9 influenza virus, A/Anhui/1/2013 (H7N9), isolated from a patient in a cynomolgus macaque model. NA inhibitors (oseltamivir and peramivir) barely reduced the total virus amount because of the emergence of resistant variants with R289K or 1219T in NA [residues 289 and 219 in N9 of A/Anhui/1/2013 (H7N9) correspond to 292 and 222 in N2, respectively] in three of the six treated macaques, whereas subcutaneous immunization of an inactivated vaccine derived from A/duck/Mongolia/119/2008 (H7N9) prevented propagation of A/Anhui/1/2013 (H7N9) in all vaccinated macaques. The percentage of macaques in which variant H7N9 viruses with low sensitivity to the NA inhibitors were detected was much higher than that of macaques in which variant H5N1 highly pathogenic influenza virus was detected after treatment with one of the NA inhibitors in our previous study. The virus with R289K in NA was reported in samples from human patients, whereas that with 1219T in NA was identified for the first time in this study using macaques, though no variant H7N9 virus was reported in previous studies using mice. Therefore, the macaque model enables prediction of the frequency of emerging H7N9 virus resistant to NA inhibitors in vivo. Since H7N9 strains resistant to NA inhibitors might easily emerge compared to other influenza viruses, monitoring of the emergence of variants is required during treatment of H7N9 influenza virus infection with NA inhibitors.
引用
收藏
页码:4962 / 4973
页数:12
相关论文
共 50 条
  • [21] The emergence of H7N9 viruses: a chance to redefine correlates of protection for influenza virus vaccines
    Krammer, Florian
    Cox, Rebecca J.
    EXPERT REVIEW OF VACCINES, 2013, 12 (12) : 1369 - 1372
  • [22] Molecular Docking of Potential Inhibitors for Influenza H7N9
    Liu, Zekun
    Zhao, Junpeng
    Li, Weichen
    Wang, Xinkun
    Xu, Jingxuan
    Xie, Jin
    Tao, Ke
    Shen, Li
    Zhang, Ran
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [23] Effectiveness of neuraminidase inhibitors to prevent mortality in patients with laboratory-confirmed avian influenza A H7N9
    Cheng, Wei
    Pan, Anqi
    Rathbun, Stephen L.
    Ge, Yang
    Xiao, Qian
    Martinez, Leonardo
    Ling, Feng
    Liu, Shelan
    Wang, Xiaoxiao
    Yu, Zhao
    Ebell, Mark H.
    Li, Changwei
    Handel, Andreas
    Chen, Enfu
    Shen, Ye
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2021, 103 : 573 - 578
  • [24] Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus
    Dai, Meiling
    McBride, Ryan
    Dortmans, Jos C. F. M.
    Peng, Wenjie
    Bakkers, Mark J. G.
    de Groot, Raoul J.
    van Kuppeveld, Frank J. M.
    Paulson, James C.
    de Vries, Erik
    de Haan, Cornelis A. M.
    JOURNAL OF VIROLOGY, 2017, 91 (09)
  • [25] Phylogenetic and evolutionary analysis of influenza A H7N9 virus
    Babakir-Mina, Muhammed
    Dimonte, Salvatore
    Lo Presti, Alessandra
    Cella, Eleonora
    Perno, Carlo Federico
    Ciotti, Marco
    Ciccozzi, Massimo
    NEW MICROBIOLOGICA, 2014, 37 (03): : 369 - 376
  • [26] Antigenic Drift of Influenza A(H7N9) Virus Hemagglutinin
    Ning, Tingting
    Nie, Jianhui
    Huang, Weijin
    Li, Changgui
    Li, Xuguang
    Liu, Qiang
    Zhao, Hui
    Wang, Youchun
    JOURNAL OF INFECTIOUS DISEASES, 2019, 219 (01): : 19 - 25
  • [27] Immunity to the newly emerged A/H7N9 influenza virus
    Wang, Z.
    Wan, Y.
    Zhang, A.
    Qiu, C.
    Quinones-Parra, S.
    Loh, L.
    Nguyen, O.
    Ren, Y.
    Thomas, P.
    Inouye, M.
    Zhang, X.
    Doherty, P.
    Xu, J.
    Kedzierska, K.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 : 623 - 623
  • [28] Novel human H7N9 influenza virus in China
    Wang, Chengmin
    Luo, Jing
    Wang, Jing
    Su, Wen
    Gao, Shanshan
    Zhang, Min
    Xie, Li
    Ding, Hua
    Liu, Shelan
    Liu, Xiaodong
    Chen, Yu
    Jia, Yaxiong
    He, Hongxuan
    INTEGRATIVE ZOOLOGY, 2014, 9 (03): : 372 - 375
  • [29] Nosocomial transmission of avian influenza virus A (H7N9)
    van der Sande, Marianne A. B.
    van der Hoek, Wim
    BMJ-BRITISH MEDICAL JOURNAL, 2015, 351
  • [30] Sex differences in H7N9 influenza A virus pathogenesis
    Hoffmann, Julia
    Otte, Anna
    Thiele, Swantje
    Lotter, Hannelore
    Shu, Yuelong
    Gabriel, Guelsah
    VACCINE, 2015, 33 (49) : 6949 - 6954