Radiomics-based Malignancy Prediction of Parotid Gland Tumor

被引:0
|
作者
Kamezawa, H. [1 ,2 ]
Arimura, H. [2 ]
Yasumatsu, R. [2 ]
Ninomiya, K. [3 ]
Haseai, S. [3 ]
机构
[1] Teikyo Univ, Fac Fukuoka Med Technol, 6-22 Misaki Machi, Omuta, Fukuoka 8368505, Japan
[2] Kyushu Univ, Fac Med Sci, Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan
[3] Kyushu Univ, Grad Sch Med Sci, Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan
关键词
Radiomics; Malignancy prediction; Parotid gland tumor; Machine learning classifier; TEXTURAL FEATURES;
D O I
10.1117/12.2521362
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have investigated an approach for prediction of parotid gland tumor (PGT) malignancy on preoperative magnetic resonance (MR) images. The PGT regions were segmented on the MR images of 42 patients. A total of 972 radiomic features were extracted from tumor regions in T1-and T2-weighted MR images. Five features were selected as a radiomic biomarker from the 972 features by using a least absolute shrinkage and selection operator (LASSO). Malignancies of PGTs (high grade versus intermediate and low grades) were predicted by using random forest (RF) and k-nearest neighbors (k-NN) with the radiomic biomarker. The proposed approach was evaluated using the accuracy and the mean area under the receiver operating characteristic curve (AUC) based on a leave-one-out cross validation test. The accuracy and AUC of the malignancy prediction of PGTs were 73.8% and 0.88 for the RF and 88.1% and 0.95 for the k-NN, respectively. Our results suggested that the radiomics-based k-NN approach using preoperative MR images could be feasible to predict the malignancy of PGT.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Radiomics-based prediction of response to induction chemotherapy in sinonasal cancer
    Bologna, M.
    Calareso, G.
    Resteghini, C.
    Sdao, S.
    Montin, E.
    Corino, V.
    Mainardi, L.
    Licitra, L.
    Bossi, P.
    RADIOTHERAPY AND ONCOLOGY, 2019, 132 : 59 - 59
  • [12] Radiomics-Based Outcome Prediction Model Development ForPancreatic Cancer
    Zheng, D.
    Baine, M.
    Zhang, C.
    Du, Q.
    Liang, X.
    Kamal, A.
    Yu, H.
    MEDICAL PHYSICS, 2018, 45 (06) : E410 - E411
  • [13] Fusion Radiomics-Based Prediction of Response to Neoadjuvant Chemotherapy for Osteosarcoma
    Zheng, Fei
    Yin, Ping
    Liang, Kewei
    Wang, Yujian
    Hao, Wenhan
    Hao, Qi
    Hong, Nan
    ACADEMIC RADIOLOGY, 2024, 31 (06) : 2444 - 2455
  • [14] Radiomics-based model for outcome prediction in primary sclerosing cholangitis
    Cristoferi, Laura
    Porta, Marco
    Bernasconi, Davide
    Filippo, Leonardi
    Mulinacci, Giacomo
    Palermo, Andrea
    Gerussi, Alessio
    Scaravaglio, Miki
    Gallo, Camilla
    Stucchi, Eliana
    Maino, Cesare
    Ippolito, Davide
    D'Amato, Daphne
    Ferreira, Carlos
    Mavar-Haramija, Marija
    Banerjee, Rajarshi
    Antolini, Laura
    Valsecchi, Maria Grazie
    Fagiuoli, Stefano
    Invernizzi, Pietro
    Carbone, Marco
    JOURNAL OF HEPATOLOGY, 2022, 77 : S96 - S96
  • [15] Plasma Protein- and Radiomics-based Prediction of Tumor Response to Modified FOLFIRINOX in Pancreatic Ductal Adenocarcinoma
    Zhang, Q.
    Lou, Y.
    Tang, T.
    Bai, X.
    Liang, T.
    PANCREAS, 2019, 48 (10) : 1561 - 1561
  • [16] A nomogram based on clinical information, conventional ultrasound and radiomics improves prediction of malignant parotid gland lesions
    Li, Qunying
    Jiang, Tao
    Zhang, Chao
    Zhang, Ying
    Huang, Zixuan
    Zhou, Hang
    Huang, Pintong
    CANCER LETTERS, 2022, 527 : 107 - 114
  • [17] A Radiomics-Based Machine Learning Model for Prediction of Tumor Mutational Burden in Lower-Grade Gliomas
    Luu Ho Thanh Lam
    Ngan Thy Chu
    Thi-Oanh Tran
    Duyen Thi Do
    Nguyen Quoc Khanh Le
    CANCERS, 2022, 14 (14)
  • [18] Deep learning radiomics-based preoperative prediction of recurrence in chronic rhinosinusitis
    He, Shaojuan
    Chen, Wei
    Li, Anning
    Xie, Xinyu
    Liu, Fangying
    Ma, Xinyi
    Feng, Xin
    Wang, Xuehai
    Li, Xuezhong
    ISCIENCE, 2023, 26 (04)
  • [19] Radiomics-based prediction of radiosensitivity from preclinical HNSCC histopathology images
    Michlikova, S.
    Meneghetti, A. Rabasco
    Loeck, S.
    Yakimovich, A.
    Rassamegevanon, T.
    von Neubeck, C.
    Dietrich, A.
    Krause, M.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S593 - S593
  • [20] Computed Tomography Radiomics-Based Prediction of Microvascular Invasion in Hepatocellular Carcinoma
    Yao, Wenjun
    Yang, Shuo
    Ge, Yaqiong
    Fan, Wenlong
    Xiang, Li
    Wan, Yang
    Gu, Kangchen
    Zhao, Yan
    Zha, Rujing
    Bu, Junjie
    FRONTIERS IN MEDICINE, 2022, 9