Radiomics-based Malignancy Prediction of Parotid Gland Tumor

被引:0
|
作者
Kamezawa, H. [1 ,2 ]
Arimura, H. [2 ]
Yasumatsu, R. [2 ]
Ninomiya, K. [3 ]
Haseai, S. [3 ]
机构
[1] Teikyo Univ, Fac Fukuoka Med Technol, 6-22 Misaki Machi, Omuta, Fukuoka 8368505, Japan
[2] Kyushu Univ, Fac Med Sci, Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan
[3] Kyushu Univ, Grad Sch Med Sci, Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan
关键词
Radiomics; Malignancy prediction; Parotid gland tumor; Machine learning classifier; TEXTURAL FEATURES;
D O I
10.1117/12.2521362
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have investigated an approach for prediction of parotid gland tumor (PGT) malignancy on preoperative magnetic resonance (MR) images. The PGT regions were segmented on the MR images of 42 patients. A total of 972 radiomic features were extracted from tumor regions in T1-and T2-weighted MR images. Five features were selected as a radiomic biomarker from the 972 features by using a least absolute shrinkage and selection operator (LASSO). Malignancies of PGTs (high grade versus intermediate and low grades) were predicted by using random forest (RF) and k-nearest neighbors (k-NN) with the radiomic biomarker. The proposed approach was evaluated using the accuracy and the mean area under the receiver operating characteristic curve (AUC) based on a leave-one-out cross validation test. The accuracy and AUC of the malignancy prediction of PGTs were 73.8% and 0.88 for the RF and 88.1% and 0.95 for the k-NN, respectively. Our results suggested that the radiomics-based k-NN approach using preoperative MR images could be feasible to predict the malignancy of PGT.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A Radiomics-Based Machine Learning Perspective on the Parotid Gland as a Potential Surrogate Marker for HPV in Oropharyngeal Cancer
    Prasse, Gordian
    Glaas, Agnes
    Meyer, Hans-Jonas
    Zebralla, Veit
    Dietz, Andreas
    Hering, Kathrin
    Kuhnt, Thomas
    Denecke, Timm
    Isomoto, Hajime
    Kloss-Brandstaetter, Anita
    CANCERS, 2023, 15 (22)
  • [2] Radiomics-based comparison of MRI and CT for differentiating pleomorphic adenomas and Warthin tumors of the parotid gland: a retrospective study
    Liu, Yuebo
    Zheng, Jiabao
    Lu, Xiaoping
    Wang, Yao
    Meng, Fantai
    Zhao, Jizhi
    Guo, Chunlan
    Yu, Lijiang
    Zhu, Zhihui
    Zhang, Tao
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2021, 131 (05): : 591 - 599
  • [3] RADIOMICS-BASED PREDICTION OF HCC RESPONSE TO ATEZOLIZUMAB/BEVACIZUMAB
    Salazar, Isaac Israel Rodriguez
    Teufel, Andreas
    Vellala, Abhinay
    Itzel, Timo
    Daza, Jimmy
    Vacha, Michael
    Debic, Manuel
    Chang, De-Hua
    Dill, Michael
    Seidensticker, Max
    Schonberg, Gerd Oswald Stefan
    Mueller, Lukas
    Mayerle, Julia
    Munker, Stefan
    Galle, Peter
    Weinmann, Arndt
    Tamandl, Dietmar
    Pinter, Matthias
    Venerito, Marino
    Ebert, Matthias
    Froelich, Matthias
    Pech, Maciej
    Sinner, Friedrich
    Scheiner, Bernhard
    HEPATOLOGY, 2024, 80
  • [4] Prediction of tumor response via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE
    Chunli Kong
    Zhongwei Zhao
    Weiyue Chen
    Xiuling Lv
    Gaofeng Shu
    Miaoqing Ye
    Jingjing Song
    Xihui Ying
    Qiaoyou Weng
    Wei Weng
    Shiji Fang
    Minjiang Chen
    Jianfei Tu
    Jiansong Ji
    European Radiology, 2021, 31 : 7500 - 7511
  • [5] Prediction of tumor response via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE
    Kong, Chunli
    Zhao, Zhongwei
    Chen, Weiyue
    Lv, Xiuling
    Shu, Gaofeng
    Ye, Miaoqing
    Song, Jingjing
    Ying, Xihui
    Weng, Qiaoyou
    Weng, Wei
    Fang, Shiji
    Chen, Minjiang
    Tu, Jianfei
    Ji, Jiansong
    EUROPEAN RADIOLOGY, 2021, 31 (10) : 7500 - 7511
  • [6] Synthetic MRI improves radiomics-based glioblastoma survival prediction
    Moya-Saez, Elisa
    Navarro-Gonzalez, Rafael
    Cepeda, Santiago
    Perez-Nunez, Angel
    De Luis-Garcia, Rodrigo
    Aja-Fernandez, Santiago
    Alberola-Lopez, Carlos
    NMR IN BIOMEDICINE, 2022, 35 (09)
  • [7] RADIOMICS-BASED MODEL FOR OUTCOME PREDICTION IN PRIMARY SCLEROSING CHOLANGITIS
    Cristoferi, Laura
    Porta, Marco
    Bernasconi, Davide Paolo
    Leonardi, Filippo
    Mulinacci, Giacomo
    Palermo, Andrea
    Gerussi, Alessio
    Gallo, Camilla
    Scaravaglio, Miki
    Stucchi, Eliana
    Maino, Cesare
    Ippolito, Davide
    D'Amato, Daphne
    Ferreira, Carlos
    Mavar, Marija
    Banerjee, Rajarshi
    Antolini, Laura
    Valsecchi, Maria Grazia
    Fagiuoli, Stefano
    Invernizzi, Pietro
    Carbone, Marco
    GASTROENTEROLOGY, 2022, 162 (07) : S1286 - S1287
  • [8] RADIOMICS-BASED MODEL FOR OUTCOME PREDICTION IN PRIMARY SCLEROSING CHOLANGITIS
    Cristoferi, L.
    Porta, M.
    Bernasconi, D. P.
    Leonardi, F.
    Mulinacci, G.
    Palermo, A.
    Gerussi, A.
    Scaravaglio, M.
    Gallo, C.
    D'Amato, D.
    Maino, C.
    Ippolito, D.
    Ferreira, C.
    Mavar, M.
    Rajarshi, B.
    Antolini, L.
    Valsecchi, M. G.
    Fagiuoli, S.
    Invernizzi, P.
    Carbone, M.
    DIGESTIVE AND LIVER DISEASE, 2022, 54 : S66 - S67
  • [9] Radiomics-based prediction of FIGO grade for placenta accreta spectrum
    Helena C. Bartels
    Jim O’Doherty
    Eric Wolsztynski
    David P. Brophy
    Roisin MacDermott
    David Atallah
    Souha Saliba
    Constance Young
    Paul Downey
    Jennifer Donnelly
    Tony Geoghegan
    Donal J. Brennan
    Kathleen M. Curran
    European Radiology Experimental, 7
  • [10] Radiomics-based prediction of HCC response to atezolizumab/bevacizumab.
    Rodriguez, Isaac
    Vellala, Abhinay
    Itzel, Timo
    Vacha, Michael
    Chang, De-Hua
    Dill, Michael
    Seidensticker, Max
    Mayerle, Julia
    Munker, Stefan
    Schoenberg, Stefan O.
    Mueller, Lukas
    Galle, Peter Robert
    Weinmann, Arndt
    Tamandl, Dietmar
    Pinter, Matthias
    Scheiner, Bernhard
    Teufel, Andreas
    Froelich, Matthias
    Ebert, Matthias Philip
    Venerito, Marino
    JOURNAL OF CLINICAL ONCOLOGY, 2025, 43 (4_SUPPL) : 636 - 636