Phase transitions and critical properties in systems of interacting multicomponent magnetic bosons

被引:7
|
作者
DAuria, AC
DeCesare, L
Rabuffo, I
机构
[1] UNIV NAPLES,CNR,CTR INTERUNIV STRUTT MAT,I-80125 NAPLES,ITALY
[2] UNIV SALERNO,DIPARTIMENTO FIS TEOR,I-84100 SALERNO,ITALY
[3] UNIV SALERNO,SMSA,I-84100 SALERNO,ITALY
[4] UNIV SALERNO,CNR,CTR INTERUNIV STRUTT MAT,I-84100 SALERNO,ITALY
来源
PHYSICA A | 1996年 / 225卷 / 3-4期
关键词
interacting magnetic bosons; Bose condensation; Bose ferromagnetism;
D O I
10.1016/0378-4371(96)00007-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A d-dimensional model of multicomponent interacting bosons with spin S and a magnetic moment in the presence of a magnetic field H is studied by means of a large-n limit treatment and a renormalization group approach, in the spirit of critical phenomena theory. Magnetic phase transitions and a ferromagnetic state with a zero-field divergent susceptibility and an exotic criticality are shown to occur, as in the noninteracting model, strictly related to the onset of the Bose-Einstein condensation. The bosonic and magnetic properties of the system are explored by approaching a critical line which marks, for H not equal 0, the occurrence of Bose-Einstein transitions together with magnetic ones whose order, greater than two, depends on the ratio d/theta, where 0 < theta less than or equal to 2 is connected to the range of interactions (in the n-vector classical counterpart).
引用
收藏
页码:363 / 390
页数:28
相关论文
共 50 条
  • [31] Quantum phase transitions of anisotropic dipolar bosons under artificial magnetic field
    Gao Ji-Ming
    Di Guo-Wen
    Yu Zi-Fa
    Tang Rong-An
    Xu Hong-Ping
    Xue Ju-Kui
    ACTA PHYSICA SINICA, 2024, 73 (13)
  • [32] Mesoscopic phase transitions and critical behavior of complex magnetic shape-memory systems
    Yamazaki, Y
    Gleiter, H
    Tani, J
    Matsumoto, M
    PHYSICAL REVIEW B, 2002, 66 (01) : 144111 - 1441112
  • [33] Phase diagram of interacting bosons on the honeycomb lattice
    Wessel, Stefan
    PHYSICAL REVIEW B, 2007, 75 (17):
  • [34] Long-range interacting systems and dynamical phase transitions
    Baldovin, Fulvio
    Orlandini, Enzo
    Chavanis, Pierre-Henri
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 257 - +
  • [35] Unifying topological phase transitions in non-interacting, interacting, and periodically driven systems
    Molignini, Paolo
    Chitra, R.
    Chen, Wei
    EPL, 2019, 128 (03)
  • [36] CRITICAL TRANSITIONS OF TERNARY MIXTURES - A WINDOW ON THE PHASE-BEHAVIOR OF MULTICOMPONENT FLUIDS
    WEI, YS
    SADUS, RJ
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1994, 15 (06) : 1199 - 1209
  • [37] Topological phase transitions of interacting fermions in the presence of a commensurate magnetic flux
    Fuenfhaus, Axel
    Moeller, Marius
    Kopp, Thilo
    Valenti, Roser
    PHYSICAL REVIEW B, 2024, 110 (04)
  • [38] Topological transitions for lattice bosons in a magnetic field
    Huber, Sebastian D.
    Lindner, Netanel H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (50) : 19925 - 19930
  • [39] Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix
    Elliott, CM
    Garcke, H
    PHYSICA D-NONLINEAR PHENOMENA, 1997, 109 (3-4) : 242 - 256
  • [40] THERMODYNAMIC FORMALISM OF PHASE-TRANSITIONS IN THE SYSTEMS WITH A MULTICOMPONENT ORDERING PARAMETER
    YURKEVICH, VE
    ROLOV, BN
    POLANDOV, IN
    MALUTIN, BI
    FERROELECTRICS, 1981, 37 (1-4) : 535 - 535