QUANTUM MONTE CARLO STUDY OF MAGNETIC CORRELATION IN GRAPHENE NANORIBBONS AND QUANTUM DOTS

被引:0
|
作者
Gao, Pan [1 ]
Liu, Suhang [1 ]
Tian, Lin [1 ]
Ma, Tianxing [1 ,2 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2013年 / 27卷 / 21期
基金
高等学校博士学科点专项科研基金;
关键词
Graphene nanoribbons; magnetism; Quantum Monte Carlo; HUBBARD-MODEL; FERROMAGNETISM; SPINTRONICS;
D O I
10.1142/S0217984913300160
中图分类号
O59 [应用物理学];
学科分类号
摘要
To realize the application of spintronics, possible magnetism in graphene-based material is an important issue to be addressed. At the tight banding level of armchair graphene nanoribbons, there are two flat bands in the band structure, two Van Hove singularities in the density of states, and the introducing of the next-nearest-neighbor hopping term cause high asymmetry in them, which plays a key role in the behavior of magnetic correlation. We further our studies within determinant quantum Monte Carlo simulation to treat the electron-electron interaction. It is found that the armchair graphene nanoribbons show carrier mediated magnetic correlation. In the armchair graphene nanoribbons, the antiferromagnetic correlation dominates around half filling, while the ferromagnetic correlation dominates as electron filling is lower than 0.8. Moreover, the ferromagnetic correlation is strengthened markedly as the next-nearest-neighbor hopping energy increases. The resultant manipulation of ferromagnetism in graphene-based material may facilitate the development of spintronics.
引用
收藏
页数:14
相关论文
共 50 条
  • [42] Multilevel blocking Monte Carlo simulations for quantum dots
    Egger, R
    Mak, CH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1416 - 1425
  • [43] Monte Carlo simulation of the growth of metallic quantum dots
    Boero, M
    Mulheran, PA
    Inkson, JC
    MICROELECTRONIC ENGINEERING, 1998, 42 : 515 - 518
  • [44] Variational Monte Carlo for Interacting Electrons in Quantum Dots
    Ari Harju
    Journal of Low Temperature Physics, 2005, 140 : 181 - 210
  • [45] Monte Carlo simulation of the growth of metallic quantum dots
    Boero, M.
    Mulheran, P.A.
    Inkson, J.C.
    Microelectronic Engineering, 1998, 41-42 : 515 - 518
  • [46] Path-integral Monte Carlo study of electronic states in quantum dots in an external magnetic field
    Toke, Csaba
    Galambos, Tamas Haidekker
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [47] Quantum Monte Carlo Study of Anderson Magnetic Impurities in Semiconductors
    Bulut, N.
    Tomoda, Y.
    Tanikawa, K.
    Takahashi, S.
    Maekawa, S.
    ADVANCES IN NANOSCALE MAGNETISM, 2009, 122 : 67 - 87
  • [48] Magnetic properties of graphene quantum dots
    Espinosa-Ortega, T.
    Luk'yanchuk, I. A.
    Rubo, Y. G.
    PHYSICAL REVIEW B, 2013, 87 (20):
  • [49] Variational wave function for a quantum dot in a magnetic field: A quantum Monte Carlo study
    Harju, A
    Sverdlov, VA
    Nieminen, RM
    EUROPHYSICS LETTERS, 1998, 41 (04): : 407 - 412
  • [50] Double quantum dots in atomically-precise graphene nanoribbons
    Zhang, Jian
    Qian, Liu
    Barin, Gabriela Borin
    Chen, Peipei
    Muellen, Klaus
    Ruffieux, Pascal
    Fasel, Roman
    Zhang, Jin
    Calame, Michel
    Perrin, Mickael L.
    MATERIALS FOR QUANTUM TECHNOLOGY, 2023, 3 (03):