DIFFEOMORPHIC SMOOTHING FOR RETINOTOPIC MAPPING

被引:0
|
作者
Tu, Yanshuai [1 ]
Ta, Duyan [1 ]
Lu, Zhong-Lin [2 ,3 ,4 ]
Wang, Yalin [1 ]
机构
[1] Arizona State Univ, Sch Comp Informat Decis Syst Engn, Tempe, AZ 85281 USA
[2] NYU Shanghai, Div Arts & Sci, Shanghai, Peoples R China
[3] NYU, Ctr Neural Sci, New York, NY 10003 USA
[4] NYU, Dept Psychol, 6 Washington Pl, New York, NY 10003 USA
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
关键词
Retinotopic Mapping; Diffeomorphic Smoothing; Beltrami Coefficient; STRIATE CORTEX; VISUAL AREAS; FIELD; REPRESENTATION; MAP;
D O I
10.1109/isbi45749.2020.9098316
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Retinotopic mapping, the mapping of visual input on the retina to cortical neurons, is an important topic in vision science. Typically, cortical neurons are related to visual input on the retina using functional magnetic resonance imaging (fMRI) of cortical responses to slowly moving visual stimuli on the retina. Although it is well known from neurophysiology studies that retinotopic mapping is locally diffeomorphic (i.e., smooth, differentiable, and invertible) within each local area, the retinotopic maps from fMRI are often not diffeomorphic, especially near the fovea, because of the low signal-noise ratio of fMRI. The aim of this study is to develop and solve a mathematical model that produces diffeomorphic retinotopic mapping from fMRI data. Specifically, we adopt a geometry concept, the Beltrami coefficient, as the tool to define diffeomorphism, and model the problem in an optimization framework. Efficient numerical methods are proposed to solve the model. Experimental results with both synthetic and real retinotopy data demonstrate that the proposed method is superior to conventional smoothing methods.
引用
收藏
页码:534 / 538
页数:5
相关论文
共 50 条
  • [41] Characterizing human retinotopic mapping with conformal geometry: A preliminary study
    Ta, Duyan
    Shi, Jie
    Barton, Brian
    Brewer, Alyssa
    Lu, Zhong-Lin
    Wang, Yalin
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [42] Comparison of stimulus types for retinotopic cortical mapping of macular disease
    Pawloff, Maximilian
    Linhardt, David
    Hummer, Allan
    Schmidt-Erfurth, Ursula
    Windischberger, Christian
    Ritter, Markus
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [43] Autoregressive spatial smoothing and temporal spline smoothing for mapping rates
    MacNab, YC
    Dean, CB
    BIOMETRICS, 2001, 57 (03) : 949 - 956
  • [44] SMOOTHING ERROR DYNAMICS AND THEIR USE IN THE SOLUTION OF SMOOTHING AND MAPPING PROBLEMS
    BELLO, MG
    WILLSKY, AS
    LEVY, BC
    CASTANON, DA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (04) : 483 - 495
  • [45] RETINOTOPIC MAPPING AFTER BILATERAL IMPLANTATION OF A MULTIFOCAL DIFFRACTIVE IOL
    Costa, Jose F.
    Rosa, Andreia C.
    Miranda, Angela
    Lobo, Conceicao F.
    Silva, Fatima
    Castelo-Branco, Miguel
    Murta, Joaquim N.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [46] Retinotopic cortical mapping in objective functional monitoring of macular therapy
    Ritter, Markus
    Hummer, Allan
    Pawloff, Maximilian
    Ledolter, Anna A.
    Linhardt, David
    Woletz, Michael
    Deak, Gabor Gyoergy
    Sacu, Stefan
    Ristl, Robin
    Ramazanova, Dariga
    Holder, Graham E.
    Windischberger, Christian
    Schmidt-Erfurth, Ursula Margarethe
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2024,
  • [47] STalign: Alignment of spatial transcriptomics data using diffeomorphic metric mapping
    Clifton, Kalen
    Anant, Manjari
    Aihara, Gohta
    Atta, Lyla
    Aimiuwu, Osagie K.
    Kebschull, Justus M.
    Miller, Michael I.
    Tward, Daniel
    Fan, Jean
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [48] Protocol for topology-preserving smoothing of BOLD fMRI retinotopic maps of the human visual cortex
    Tu, Yanshuai
    Li, Xin
    Lu, Zhong-Lin
    Wang, Yalin
    STAR PROTOCOLS, 2022, 3 (03):
  • [49] Diffeomorphic Metric Landmark Mapping Using Stationary Velocity Field Parameterization
    Xianfeng Yang
    Yonghui Li
    David Reutens
    Tianzi Jiang
    International Journal of Computer Vision, 2015, 115 : 69 - 86
  • [50] Diffeomorphic Metric Landmark Mapping Using Stationary Velocity Field Parameterization
    Yang, Xianfeng
    Li, Yonghui
    Reutens, David
    Jiang, Tianzi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (02) : 69 - 86