Note: Spectral motional Stark effect diagnostic for measurement of magnetic fields below 0.3 T

被引:6
|
作者
Lizunov, A. [1 ,2 ]
Donin, A. [1 ,2 ]
Savkin, V. [1 ]
机构
[1] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2013年 / 84卷 / 08期
关键词
Axially symmetric - Direct measurement - High-beta plasmas - Magnetic confinement - Motional Stark effect diagnostic - Motional stark effects - Plasma magnetic field - Self organizations;
D O I
10.1063/1.4817644
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The paper reports on development of the spectral motional Stark effect (MSE) diagnostic in the midplane of the gas dynamic trap (GDT) linear system for magnetic confinement of anisotropic hot-ion plasma. The axially symmetric GDT vacuum magnetic field has a minimum value in the midplane, which varies from 0.2 to 0.35 T in different regimes of operation. Buildup of 15 keV ion population generates a diamagnetic reduction of magnetic field in the plasma core of up to 30% in the maximum density region, as measured by the existing eight-line MSE diagnostic. Commissioning of the midplane MSE provided first direct measurements of diamagnetic modifications in the minimum magnetic field GDT section, a necessary complement to the understanding of equilibrium and self-organization of high-beta plasmas in GDT. Making use of the stable short-pulse diagnostic beam and calibration of the apparent spectral width of beam emission lines allow for the measurement of the plasma magnetic field of 0.29 +/- 0.007 T with the integration time of 200 mu s. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Improved spectral analysis for the motional Stark effect diagnostic
    Ko, J.
    Klabacha, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):
  • [2] Note: Multi-point measurement of |B| in the gas-dynamic trap with a spectral motional Stark effect diagnostic
    Lizunov, A. A.
    Den Hartog, D. J.
    Donin, A. S.
    Ivanov, A. A.
    Prikhodko, V. V.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (08):
  • [3] MOTIONAL STARK EFFECT SPECTROSCOPY IN HIGH MAGNETIC-FIELDS
    ROSENBLUH, M
    PANOCK, R
    LAX, B
    MILLER, TA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (11) : 1631 - 1631
  • [4] Motional Stark effect diagnostic on TEXTOR
    Jakubowska, K
    De Bock, M
    Jaspers, R
    von Hellermann, M
    Shmaenok, L
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10): : 3475 - 3477
  • [5] The motional Stark effect diagnostic on NSTX
    Levinton, F. M.
    Yuh, H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [6] The motional Stark effect diagnostic for ITER
    Foley, E. L.
    Levinton, F. M.
    Uzun-Kaymak, I. U.
    Galante, M. E.
    Zhang, X.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (07):
  • [7] The MAST motional Stark effect diagnostic
    Conway, N. J.
    De Bock, M. F. M.
    Michael, C. A.
    Walsh, M. J.
    Carolan, P. G.
    Hawkes, N. C.
    Rachlew, E.
    McCone, J. F. G.
    Shibaev, S.
    Wearing, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10):
  • [8] Preparations for the motional Stark effect diagnostic on EAST
    Fu, J.
    Li, Y. Y.
    Lyu, B.
    Sheng, P.
    Zhang, Y.
    Yin, X. H.
    Shi, Y. J.
    Yu, Y.
    Ye, M. Y.
    Wan, B. N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [9] Observation of the motional Stark shift in low magnetic fields
    Kaiser, Manuel
    Grimmel, Jens
    Torralbo-Campo, Lara
    Mack, Markus
    Karlewski, Florian
    Jessen, Florian
    Schopohl, Nils
    Fortagh, Jozsef
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [10] Atomic models for the motional Stark effect diagnostic
    Gu, M. F.
    Holcomb, C. T.
    Jayakuma, R. J.
    Allen, S. L.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2008, 41 (09)