Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy

被引:7
|
作者
Wang, Lin [1 ,2 ]
Vasilev, Cvetelin [2 ]
Canniffe, Daniel P. [2 ]
Wilson, Luke R. [1 ]
Hunter, C. Neil [2 ]
Cadby, Ashley J. [1 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
来源
OPTICS EXPRESS | 2012年 / 20卷 / 03期
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
ILLUMINATION MICROSCOPY; THYLAKOID MEMBRANES; RESOLUTION; LENS; CELLS; REALIZATION; EXCITATION; PLASMA;
D O I
10.1364/OE.20.003311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the use of a high-refractive-index aplanatic solid immersion lens (ASIL) in total internal reflection fluorescence (TIRF) microscopy. This new solid immersion total internal reflection fluorescence (SITIRF) microscopy allows highly confined surface imaging with a significantly reduced imaging depth compared with conventional TIRF microscopy. We explore the application of a high refractive index, low optical dispersion material zirconium dioxide in the SITIRF microscope and also introduce a novel system design which enables the SITIRF microscope to work either in the epi-fluorescence or TIRF modes with variable illumination angles. We use both synthetic and biological samples to demonstrate that the imaging depth in the SITIRF microscope can be confined to a few tens of nanometers. SITIRF microscopy has the advantages of performing highly selective imaging and high-resolution high-contrast imaging. Potential applications in biological imaging and future developments of SITIRF microscopy are proposed. (C) 2012 Optical Society of America
引用
收藏
页码:3311 / 3324
页数:14
相关论文
共 50 条
  • [31] Sequential exocytosis detected by total internal reflection fluorescence microscopy
    Tran, Samuel
    Huet, Sebastien
    Fanget, Isabelle
    Cribier, Sophie
    Henry, Jean-Pierre
    Karatekin, Erdem
    BIOPHYSICAL JOURNAL, 2007, : 171A - 171A
  • [32] Combined scanning probe and total internal reflection fluorescence microscopy
    Oreopoulos, John
    Yip, Christopher M.
    METHODS, 2008, 46 (01) : 2 - 10
  • [33] Around-the-objective total internal reflection fluorescence microscopy
    Burghardt, Thomas P.
    Hipp, Andrew D.
    Ajtai, Katalin
    APPLIED OPTICS, 2009, 48 (32) : 6120 - 6131
  • [34] Extending The Resolution In Total Internal Reflection Fluorescence (TIRF) Microscopy
    Fiolka, Reto P.
    Stemmer, Andreas
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 636A - 636A
  • [35] Transient State Monitoring by Total Internal Reflection Fluorescence Microscopy
    Spielmann, Thiemo
    Blom, Hans
    Geissbuehler, Matthias
    Lasser, Theo
    Widengren, Jerker
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (11): : 4035 - 4046
  • [36] Around-the-Objective Total Internal Reflection Fluorescence Microscopy
    Burghardt, Thomas P.
    Hipp, Andrew D.
    Ajtai, Katalin
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 177A - 178A
  • [37] Total internal reflection fluorescence microscopy (TIRFM) in cell biology
    Schneckenburger, H
    CYTOMETRY PART A, 2006, 69A (01) : 46 - 46
  • [38] Total internal reflection fluorescence microscopy in single molecule nanobioscience
    Wazawa, T
    Ueda, M
    MICROSCOPY TECHNIQUES, 2005, 95 : 77 - 106
  • [39] Scanning total internal reflection fluorescence microscopy and its applications
    Chon, JWM
    Gu, M
    BIOMEDICAL APPLICATIONS OF MICRO- AND NANOENGINEERING, 2002, 4937 : 202 - 210
  • [40] Total Internal Reflection Fluorescence (TIRF) Microscopy of Chlamydomonas Flagella
    Engel, Benjamin D.
    Lechtreck, Karl-Ferdinand
    Sakai, Tsuyoshi
    Ikebe, Mitsuo
    Witman, George B.
    Marshall, Wallace F.
    CILIA: MODEL ORGANISMS AND INTRAFLAGELLAR TRANSPORT, 2009, 93 : 157 - +