Constructing distinct curves with isomorphic Jacobians

被引:11
|
作者
Howe, EW [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
D O I
10.1006/jnth.1996.0026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the hyperelliptic curves y(2) = x(5) + x(3) + x(2) - x - 1 and y(2) = x(5) - x(3) + x(2) - x - 1 over the field with three elements are not geometrically isomorphic, and yet they have isomorphic Jacobian varieties. Furthermore, their Jacobians are absolutely simple. We present a method for constructing further such examples. We also present two curves of genus three, one hyperelliptic and one a plane quartic, that have isomorphic absolutely simple Jacobians. (C) 1996 Academic Press, Inc.
引用
收藏
页码:381 / 390
页数:10
相关论文
共 50 条
  • [21] Jacobians of genus one curves
    O'Neil, C
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (1-2) : 125 - 140
  • [22] Spectral curves and compactifications of Jacobians
    Schaub, D
    MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (02) : 295 - 312
  • [23] Simpson Jacobians of reducible curves
    López-Martín, AC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 582 : 1 - 39
  • [24] Jacobians of curves with ordinary singularities
    Zhang, B
    MANUSCRIPTA MATHEMATICA, 1997, 92 (01) : 1 - 12
  • [25] Endomorphisms of Jacobians of modular curves
    Kani, Ernst
    ARCHIV DER MATHEMATIK, 2008, 91 (03) : 226 - 237
  • [26] CHARACTERIZATIONS OF JACOBIANS OF CURVES WITH AUTOMORPHISMS
    Gomez Gonzalez, Esteban
    Munoz Porras, Jose M.
    Plaza Martin, Francisco J.
    Rodriguez, Rubi E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (10) : 5373 - 5394
  • [27] Tropical curves, their Jacobians and theta functions
    Mikhalkin, Grigory
    Zharkov, Ilia
    CURVES AND ABELIAN VARIETIES, 2008, 465 : 203 - +
  • [28] Topology of the compactified Jacobians of singular curves
    Jens Piontkowski
    Mathematische Zeitschrift, 2007, 255 : 195 - 226
  • [29] An approach to constructing isomorphic or non-isomorphic layout pattern
    Teng, Hong-Fei
    Li, Zi-Qiang
    Shi, Yan-Jun
    Wang, Yi-Shou
    Jisuanji Xuebao/Chinese Journal of Computers, 2006, 29 (06): : 985 - 991
  • [30] ON THE NERON MODEL OF JACOBIANS OF SHIMURA CURVES
    JORDAN, BW
    LIVNE, RA
    COMPOSITIO MATHEMATICA, 1986, 60 (02) : 227 - 236