Monte Carlo algorithms for finding the maximum of a random walk with negative drift

被引:0
|
作者
Baringhaus, L [1 ]
Grübel, R [1 ]
机构
[1] Leibniz Univ Hannover, Inst Math Stochast, D-30060 Hannover, Germany
关键词
Brownian motion with drift; conditioning; efficiency; fast Fourier transform; ladder variable; Markov chain; randomization;
D O I
10.1239/jap/1143936244
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss two Monte Carlo algorithms for finding the global maximum of a simple random walk with negative drift. This problem can be used to connect the analysis of random input Monte Carlo algorithms with ideas and principles from mathematical statistics.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 50 条
  • [21] Maximum likelihood estimation of Markov random field parameters using Markov chain Monte Carlo algorithms
    Descombes, X
    Morris, R
    Zerubia, J
    Berthod, M
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, 1223 : 133 - 148
  • [22] Random walk methods for Monte Carlo simulations of Brownian diffusion on a sphere
    Novikov, A.
    Kuzmin, D.
    Ahmadi, O.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [23] Optimal source selection in shooting random walk Monte Carlo Radiosity
    Sbert, M
    COMPUTER GRAPHICS FORUM, 1997, 16 (03) : C301 - C308
  • [24] Monte Carlo simulation of proteins through a random walk in energy space
    Rathore, N
    de Pablo, JJ
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (16): : 7225 - 7230
  • [25] MONTE-CARLO SIMULATION OF A CONFINED RANDOM-WALK CHAIN
    WU, DC
    ZHAO, DL
    QIAN, RY
    POLYMER, 1986, 27 (07) : 1087 - 1090
  • [26] Optimal source selection in shooting random walk Monte Carlo radiosity
    Universitat de Girona, Girona, Spain
    Comput Graphics Forum, 3 (C301-C308): : 4 - 8
  • [27] Singular relaxation of a random walk in a box with a Metropolis Monte Carlo dynamics
    Chepelianskii, Alexei D.
    Majumdar, Satya N.
    Schawe, Hendrik
    Trizac, Emmanuel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (25)
  • [28] Application of new Monte Carlo algorithms to random spin systems
    Okabe, Y
    Tomita, Y
    Yamaguchi, C
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 146 (01) : 63 - 68
  • [29] Lower Bounds for the Number of Random Bits in Monte Carlo Algorithms
    Heinrich, Stefan
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 131 - 147
  • [30] Performance analysis of random competition strategy in Monte Carlo algorithms
    Xie, Xing
    Zhou, Zhi
    Chen, Guo-Liang
    Gu, Jun
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (10): : 1015 - 1020