A Parallel Surrogate-Assisted Multi-Objective Evolutionary Algorithm for Computationally Expensive Optimization Problems

被引:21
|
作者
Syberfeldt, Anna [1 ]
Grimm, Henrik [1 ]
Ng, Amos [1 ]
John, Robert I. [2 ]
机构
[1] Univ Skovde, Ctr Intelligent Automat, S-54148 Skovde, Sweden
[2] De Montfort Univ, Ctr Comp Intelligence, Leicester LE1 91311, Leics, England
关键词
D O I
10.1109/CEC.2008.4631228
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new efficient multi-objective evolutionary algorithm for solving computationally-intensive optimization problems. To support a high degree of parallelism, the algorithm is based on a steady-state design. For improved efficiency the algorithm utilizes a surrogate to identify promising candidate solutions and filter out poor ones. To handle the uncertainties associated with the approximative surrogate evaluations, a new method for multi-objective optimization is described which is generally applicable to all surrogate techniques. In this method, basically, surrogate objective values assigned to offspring are adjusted to consider the error of the surrogate. The algorithm is evaluated on the ZDT benchmark functions and on a real-world problem of manufacturing optimization. In assessing the performance of the algorithm, a new performance metric is suggested that combines convergence and diversity into one single measure. Results from both the benchmark experiments and the real-world test case indicate the potential of the proposed algorithm.
引用
收藏
页码:3177 / +
页数:2
相关论文
共 50 条
  • [41] A Surrogate-Assisted Multiswarm Optimization Algorithm for High-Dimensional Computationally Expensive Problems
    Li, Fan
    Cai, Xiwen
    Gao, Liang
    Shen, Weiming
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) : 1390 - 1402
  • [42] A general framework of surrogate-assisted evolutionary algorithms for solving computationally expensive constrained optimization problems
    Yang, Zan
    Qiu, Haobo
    Gao, Liang
    Xu, Danyang
    Liu, Yuanhao
    INFORMATION SCIENCES, 2023, 619 : 491 - 508
  • [43] Constrained Dropout Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Problems
    Zhang R.
    Bai X.-L.
    Pan L.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (07): : 1859 - 1867
  • [44] A surrogate-assisted multi-objective evolutionary algorithm with dimension-reduction for production optimization
    Zhao, Mengjie
    Zhang, Kai
    Chen, Guodong
    Zhao, Xinggang
    Yao, Chuanjin
    Sun, Hai
    Huang, Zhaoqin
    Yao, Jun
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 192
  • [45] A surrogate-assisted evolutionary algorithm with knowledge transfer for expensive multimodal optimization problems
    Du, Wenhao
    Ren, Zhigang
    Wang, Jihong
    Chen, An
    INFORMATION SCIENCES, 2024, 652
  • [46] A surrogate-assisted evolutionary algorithm for expensive many-objective optimization in the refining process
    Han, Dong
    Du, Wenli
    Wang, Xinjie
    Du, Wei
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 69
  • [47] A Surrogate-assisted Memetic Algorithm for Interval Multi-objective Optimization
    Sun, Jing
    Miao, Zhuang
    Gong, Dunwei
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [48] Methodology for "Surrogate-Assisted" Multi-Objective Optimisation (MOO) for Computationally Expensive Process Flowsheet Analysis
    Sharma, Ishan
    Hoadley, Andrew
    Mahajani, Sanjay M.
    Ganesh, Anuradda
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 349 - 354
  • [49] A Three-Stage Surrogate Model Assisted Multi-Objective Genetic Algorithm for Computationally Expensive Problems
    Jiang, Puyu
    Zhou, Qi
    Liu, Jun
    Cheng, Yuansheng
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1680 - 1687
  • [50] A review of surrogate-assisted evolutionary algorithms for expensive optimization problems
    He, Chunlin
    Zhang, Yong
    Gong, Dunwei
    Ji, Xinfang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217