On optimal steering of a non-Markovian Gaussian process

被引:0
|
作者
Alpago, Daniele [1 ]
Chen, Yongxin [2 ]
Georgiou, Tryphon [3 ]
Pavon, Michele [4 ]
机构
[1] Univ Padua, Dipartimento Ingn Informaz, I-35131 Padua, Italy
[2] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[4] Univ Padua, Dipartimento Matemat Tullio Levi Civita, I-35121 Padua, Italy
基金
美国国家科学基金会;
关键词
COVARIANCE CONTROL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
At present, the problem to steer general non-Markovian processes between specified end-point marginal distributions with minimum energy remains unsolved. Herein, we consider the special case of a non-Markovian process y(t) which assumes a finite-dimensional stochastic realization with a Markov state process that is fully observable. In this setting, and over a finite time horizon [O, T], we determine an optimal (least) finite-energy control law that steers the stochastic system to a final distribution that is compatible with a specified distribution for the terminal output process y(T); the solution is given in closed-form. This work provides a key step towards the important problem to steer a stochastic system based on partial observations of the state (i.e., an output process) corrupted by noise.
引用
收藏
页码:2556 / 2561
页数:6
相关论文
共 50 条
  • [41] Data Driven Non-Markovian Quantum Process tomography
    Wu, Yingwen
    Li, Zetong
    Zhao, Dafa
    Luan, Tian
    Yu, Xutao
    Zhang, Zaichen
    2024 5TH INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE, ICTC 2024, 2024, : 54 - 58
  • [42] Master equation and dispersive probing of a non-Markovian process
    Yang, Li-Ping
    Cai, C. Y.
    Xu, D. Z.
    Zhang, Wei-Min
    Sun, C. P.
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [43] Criticality and oscillatory behavior in non-Markovian contact process
    Gerami, R
    PHYSICAL REVIEW E, 2002, 65 (03):
  • [44] Markovian embedding of non-Markovian superdiffusion
    Siegle, Peter
    Goychuk, Igor
    Talkner, Peter
    Haenggi, Peter
    PHYSICAL REVIEW E, 2010, 81 (01)
  • [45] General Non-Markovian Structure of Gaussian Master and Stochastic Schrodinger Equations
    Diosi, L.
    Ferialdi, L.
    PHYSICAL REVIEW LETTERS, 2014, 113 (20)
  • [46] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    G. M. Borges
    A. S. Ferreira
    M. A. A. da Silva
    J. C. Cressoni
    G. M. Viswanathan
    A. M. Mariz
    The European Physical Journal B, 2012, 85
  • [47] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    Borges, G. M.
    Ferreira, A. S.
    da Silva, M. A. A.
    Cressoni, J. C.
    Viswanathan, G. M.
    Mariz, A. M.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (09):
  • [48] Markovian and Non-Markovian Quantum Measurements
    Jennifer R. Glick
    Christoph Adami
    Foundations of Physics, 2020, 50 : 1008 - 1055
  • [49] Markovian and Non-Markovian Quantum Measurements
    Glick, Jennifer R.
    Adami, Christoph
    FOUNDATIONS OF PHYSICS, 2020, 50 (09) : 1008 - 1055
  • [50] ON A RANDOM PROCESS INTERPOLATING BETWEEN MARKOVIAN AND NON-MARKOVIAN RANDOM-WALKS
    CHAN, DYC
    HUGHES, BD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (03): : L121 - L127