GPU-ACCELERATED IMAGE RETEXTURING IN GRADIENT DOMAIN

被引:0
|
作者
Li, Ping [1 ]
Sun, Hanqiu [1 ]
Shen, Jianbing [2 ]
机构
[1] CUHK, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
[2] BIT, Sch Comp Sci & Technol, Beijing, Peoples R China
关键词
Image-based Rendering; Non-local Means Filtering; High Dynamic Range Image;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the novel GPU-accelated image retexturing approach for both high and low dynamic range images using our newly invented fast NLM filtering. Integrating the fast Maclaurin polynomial kernel filter and the latest GPU-CUDA acceleration, our approach is able to produce real-time high quality retexturing for objects of the interest, while preserving the original shading and similar texture distortion. We apply our revised NLM filtering to the initial depth map to ensure smoothed depth field for retexturing. Our approach using GPU-based fast NLM filtering is designed in parallel, and easy to develop on latest GPUs. Our testing results have shown the efficiency and satisfactory performance using our approach.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 50 条
  • [31] GPU-accelerated image registration algorithm in ophthalmic optical coherence tomography
    Bian, Haiyi
    Wang, Jingtao
    Hong, Chengjian
    Liu, Lei
    Ji, Rendong
    Cao, Suqun
    Abdalla, Ahmed N.
    Chen, Xinjian
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (01) : 194 - 207
  • [32] GPU-accelerated parallel image reconstruction strategies for magnetic particle imaging
    Quelhas, Klaus N.
    Henn, Mark-Alexander
    Farias, Ricardo
    Tew, Weston L.
    Woods, Solomon, I
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (13):
  • [33] An Efficient Approach of GPU-accelerated Stochastic Gradient Descent Method for Matrix Factorization
    Li, Feng
    Ye, Yunming
    Li, Xutao
    JOURNAL OF INTERNET TECHNOLOGY, 2019, 20 (04): : 1087 - 1097
  • [34] A NEW APPROACH OF GPU-ACCELERATED STOCHASTIC GRADIENT DESCENT METHOD FOR MATRIX FACTORIZATION
    Li, Feng
    Ye, Yunming
    Li, Xutao
    Lu, Jiajie
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (02): : 697 - 711
  • [35] Demo: Image Disguising for Scalable GPU-accelerated Confidential Deep Learning
    Gu, Yuechun
    Sharma, Sagar
    Chen, Keke
    PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023, 2023, : 3679 - 3681
  • [36] GPU-Accelerated Light-field Image Super-resolution
    Trung-Hieu Tran
    Mammadov, Gasim
    Sun, Kaicong
    Simon, Sven
    2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND APPLICATIONS (ACOMP), 2018, : 7 - 13
  • [37] Interactive image/video retexturing using GPU parallelism
    Li, Ping
    Sun, Hanqiu
    Huang, Chen
    Shen, Jianbing
    Nie, Yongwei
    COMPUTERS & GRAPHICS-UK, 2012, 36 (08): : 1048 - 1059
  • [38] PyTorchDIA: a flexible, GPU-accelerated numerical approach to Difference Image Analysis
    Hitchcock, James A.
    Hundertmark, Markus
    Foreman-Mackey, Daniel
    Bachelet, Etienne
    Dominik, Martin
    Street, Rachel
    Tsapras, Yiannis
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 504 (03) : 3561 - 3579
  • [39] Comprehensive framework of GPU-accelerated image reconstruction for photoacoustic computed tomography
    Wang, Yibing
    Li, Changhui
    JOURNAL OF BIOMEDICAL OPTICS, 2024, 29 (06)
  • [40] Rapid computation of sodium bioscales using gpu-accelerated image reconstruction
    Atkinson, Ian C.
    Liu, Geng
    Obeid, Nady
    Thulborn, Keith R.
    Hwu, Wen-mei
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2013, 23 (01) : 29 - 35