Adaptive Bayesian multivariate density estimation with Dirichlet mixtures

被引:79
|
作者
Shen, Weining [1 ]
Tokdar, Surya T. [2 ]
Ghosal, Subhashis [1 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Anisotropy; Dirichlet mixture; Multivariate density estimation; Nonparametric Bayesian method; Rate adaptation; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; MODEL SELECTION; INFERENCE;
D O I
10.1093/biomet/ast015
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We show that rate-adaptive multivariate density estimation can be performed using Bayesian methods based on Dirichlet mixtures of normal kernels with a prior distribution on the kernel's covariance matrix parameter. We derive sufficient conditions on the prior specification that guarantee convergence to a true density at a rate that is minimax optimal for the smoothness class to which the true density belongs. No prior knowledge of smoothness is assumed. The sufficient conditions are shown to hold for the Dirichlet location mixture-of-normals prior with a Gaussian base measure and an inverse Wishart prior on the covariance matrix parameter. Locally Holder smoothness classes and their anisotropic extensions are considered. Our study involves several technical novelties, including sharp approximation of finitely differentiable multivariate densities by normal mixtures and a new sieve on the space of such densities.
引用
收藏
页码:623 / 640
页数:18
相关论文
共 50 条
  • [41] Bayesian inference for dynamic models with dirichlet process mixtures
    Caron, Francois
    Davy, Manuel
    Doucet, Arnaud
    Duflos, Emmanuel
    Vanheeghe, Philippe
    2006 9th International Conference on Information Fusion, Vols 1-4, 2006, : 138 - 145
  • [42] Posterior asymptotics of nonparametric location-scale mixtures for multivariate density estimation
    Canale, Antonio
    De Blasi, Pierpaolo
    BERNOULLI, 2017, 23 (01) : 379 - 404
  • [43] BAYESIAN SAMPLING ESTIMATION OF MIXTURES
    DIEBOLT, J
    ROBERT, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (10): : 653 - 658
  • [44] BAYESIAN ESTIMATION OF THE DIRICHLET DISTRIBUTION WITH EXPECTATION PROPAGATION
    Ma, Zhanyu
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 689 - 693
  • [45] Optimally adaptive Bayesian spectral density estimation for stationary and nonstationary processes
    Nick James
    Max Menzies
    Statistics and Computing, 2022, 32
  • [46] Optimally adaptive Bayesian spectral density estimation for stationary and nonstationary processes
    James, Nick
    Menzies, Max
    STATISTICS AND COMPUTING, 2022, 32 (03)
  • [47] Bayesian density estimation
    Sibisi, S
    Skilling, J
    MAXIMUM ENTROPY AND BAYESIAN METHODS - PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL WORKSHOP ON MAXIMUM ENTROPY AND BAYESIAN METHODS, CAMBRIDGE, ENGLAND, 1994, 1996, 70 : 189 - 198
  • [48] Bayesian density estimation using Skew Student-t-Normal mixtures
    Barbosa Cabral, Celso Romulo
    Bolfarine, Heleno
    Gomes Pereira, Jose Raimundo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) : 5075 - 5090
  • [49] Probability density function estimation of laser light scintillation via Bayesian mixtures
    Wang, Eric X.
    Avramov-Zamurovic, Svetlana
    Watkins, Richard J.
    Nelson, Charles
    Malek-Madani, Reza
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (03) : 580 - 590
  • [50] Bayesian Semiparametric Multivariate Density Deconvolution
    Sarkar, Abhra
    Pati, Debdeep
    Chakraborty, Antik
    Mallick, Bani K.
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (521) : 401 - 416