Nonlinear autoregressive integrated neural network model for short-term load forecasting

被引:58
|
作者
Chow, TWS
Leung, CT
机构
[1] Department of Electronic Engineering, City University of Hong Kong, Kowloon
关键词
short-term load forecasting; weather compensation neural network; nonlinear autoregressive integrated model;
D O I
10.1049/ip-gtd:19960600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel neural network technique for electric load forecasting based on weather compensation is presented. The proposed method is a nonlinear generalisation of Box and Jenkins approach for nonstationary time-series prediction. A nonlinear autoregressive integrated (NARI) model is identified to be the most appropriate model to include the weather compensation in short-term electric load forecasting. A weather compensation neural network based on an NARI model is implemented for one-day ahead electric load forecasting. This weather compensation neural network can accurately predict the change of electric load consumption of the coming day. The results, based on Hong Kong Island historical load indicate that this methodology is capable of providing more accurate load forecast with a 0.9% reduction in forecast error.
引用
收藏
页码:500 / 506
页数:7
相关论文
共 50 条
  • [31] Application of weather sensitivity neural network model in short-term load forecasting on area
    He, R.
    Zeng, G.
    Yao, J.
    Qing, Z.
    Shen, X.
    Liu, M.
    Dianli Xitong Zidonghue/Automation of Electric Power Systems, 2001, 25 (17): : 32 - 35
  • [32] Two-Stage Artificial Neural Network Model for Short-Term Load Forecasting
    Hsu, Yuan-Yu
    Tung, Tao-Ting
    Yeh, Hung-Chih
    Lu, Chan-Nan
    IFAC PAPERSONLINE, 2018, 51 (28): : 678 - 683
  • [33] A Short-Term Load Forecasting Model of LSTM Neural Network considering Demand Response
    Guo, Xifeng
    Zhao, Qiannan
    Wang, Shoujin
    Shan, Dan
    Gong, Wei
    COMPLEXITY, 2021, 2021
  • [34] Design of Short-Term Power Load Forecasting Model Based on Deep Neural Network
    Duan, Qinwei
    Chao, Zhu
    Fu, Cong
    Zhong, Yashan
    Zhuo, Jiaxin
    Liao, Ye
    Strategic Planning for Energy and the Environment, 2024, 43 (02) : 25 - 452
  • [35] Short-Term Load Forecasting Using Hybrid ARIMA and Artificial Neural Network Model
    Singhal, Rahul
    Choudhary, Niraj Kumar
    Singh, Nitin
    ADVANCES IN VLSI, COMMUNICATION, AND SIGNAL PROCESSING, 2020, 587 : 935 - 947
  • [36] Unit Commitment Scheduling by Using the Autoregressive and Artificial Neural Network Models Based Short-Term Load Forecasting
    Kurban, M.
    Filik, U. Basaran
    2008 10TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, 2008, : 157 - 161
  • [37] Short-Term Stochastic Load Forecasting Using Autoregressive Integrated Moving Average Models and Hidden Markov Model
    Hermias, Jeffrel P.
    Teknomo, Kardi
    Monje, Jose Claro N.
    2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICICT), 2017, : 131 - 137
  • [38] Short-term load forecasting using threshold autoregressive models
    Huang, SR
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1997, 144 (05) : 477 - 481
  • [39] Short-Term Load Demand Forecasting Using Artificial Neural Network
    Adeyemi-Kayode, Temitope M.
    Orovwode, Hope E.
    Adoghe, Anthony U.
    Misra, Sanjay
    Agrawal, Akshat
    Lecture Notes in Electrical Engineering, 2023, 1001 LNEE : 165 - 177
  • [40] Multiple Wavelet Convolutional Neural Network for Short-Term Load Forecasting
    Liao, Zhifang
    Pan, Haihui
    Fan, Xiaoping
    Zhang, Yan
    Kuang, Li
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) : 9730 - 9739