ECG Analysis Using Multiple Instance Learning for Myocardial Infarction Detection

被引:160
|
作者
Sun, Li [1 ]
Lu, Yanping [1 ]
Yang, Kaitao [1 ]
Li, Shaozi [1 ]
机构
[1] Xiamen Univ, Dept Cognit Sci, Xiamen 361005, Fujian, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Classification; ECG analysis; multiple instance learning (MIL); myocardial infarction (MI); WAVELET TRANSFORM; NEURAL-NETWORKS; CLASSIFICATION; SIGNALS;
D O I
10.1109/TBME.2012.2213597
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a useful technique for totally automatic detection of myocardial infarction from patients' ECGs. Due to the large number of heartbeats constituting an ECG and the high cost of having all the heartbeats manually labeled, supervised learning techniques have achieved limited success in ECG classification. In this paper, we first discuss the rationale for applying multiple instance learning (MIL) to automated ECG classification and then propose a new MIL strategy called latent topic MIL, by which ECGs are mapped into a topic space defined by a number of topics identified over all the unlabeled training heartbeats and support vector machine is directly applied to the ECG-level topic vectors. Our experimental results on real ECG datasets from the PTB diagnostic database demonstrate that, compared with existing MIL and supervised learning algorithms, the proposed algorithm is able to automatically detect ECGs with myocardial ischemia without labeling any heartbeats. Moreover, it improves classification quality in terms of both sensitivity and specificity.
引用
收藏
页码:3348 / 3356
页数:9
相关论文
共 50 条
  • [41] AUTOMATIC DEPRESSION DETECTION VIA FACIAL EXPRESSIONS USING MULTIPLE INSTANCE LEARNING
    Wang, Yanfei
    Ma, Jie
    Hao, Bibo
    Hu, Pengwei
    Wang, Xiaoqian
    Mei, Jing
    Li, Shaochun
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1933 - 1936
  • [42] Vertebral Compression Fracture detection using Multiple Instance Learning and Majority Voting
    Iyer, Sankaran
    Blair, Alan
    White, Christopher
    Dawes, Laughlin
    Moses, Daniel
    Sowmya, Arcot
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4630 - 4636
  • [43] Multimedia Event Detection Using Event-Driven Multiple Instance Learning
    Phan, Sang
    Le, Duy-Dinh
    Satoh, Shin'ichi
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1255 - 1258
  • [44] Detection of Myocardial Infarction from 12 Lead ECG Images
    Sane, Ravi Kumar Sanjay
    Choudhary, Pharvesh Salman
    Sharma, L. N.
    Dandapat, Samarendra
    2021 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2021, : 404 - 409
  • [45] Multiple instance learning for lung pathophysiological findings detection using CT scans
    Julieta Frade
    Tania Pereira
    Joana Morgado
    Francisco Silva
    Cláudia Freitas
    José Mendes
    Eduardo Negrão
    Beatriz Flor de Lima
    Miguel Correia da Silva
    António J. Madureira
    Isabel Ramos
    José Luís Costa
    Venceslau Hespanhol
    António Cunha
    Hélder P. Oliveira
    Medical & Biological Engineering & Computing, 2022, 60 : 1569 - 1584
  • [46] Multiple Instance Learning Using 3D Features for Melanoma Detection
    Pereira, Pedro M. M.
    Thomaz, Lucas A.
    Tavora, Luis M. N.
    Assuncao, Pedro A. A.
    Fonseca-Pinto, Rui
    Paiva, Rui Pedro
    Faria, Sergio M. M.
    IEEE ACCESS, 2022, 10 : 76296 - 76309
  • [47] Multiple instance learning for lung pathophysiological findings detection using CT scans
    Frade, Julieta
    Pereira, Tania
    Morgado, Joana
    Silva, Francisco
    Freitas, Claudia
    Mendes, Jose
    Negrao, Eduardo
    de Lima, Beatriz Flor
    da Silva, Miguel Correia
    Madureira, Antonio J.
    Ramos, Isabel
    Costa, Jose Luis
    Hespanhol, Venceslau
    Cunha, Antonio
    Oliveira, Helder P.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (06) : 1569 - 1584
  • [48] Useful anomaly intrusion detection method using multiple-instance learning
    School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100000, China
    不详
    J. Comput. Inf. Syst., 2008, 1 (237-242):
  • [49] Multiple Instance Learning Framework For Landmine Detection Using Ground Penetrating Radar
    Manandhar, A.
    Morton, K. D.
    Collins, L. M.
    Torrione, P. A.
    DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XVI, 2011, 8017
  • [50] A MULTIPLE INSTANCE LEARNING APPROACH FOR LANDMINE DETECTION USING GROUND PENETRATING RADAR
    Karem, Andrew
    Frigui, Hichem
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 878 - 881