In an effort to increase the versatility of finite element codes, we explore the possibility of automatically creating the Jacobian matrix necessary for the gradient-based solution of nonlinear systems of equations. Particularly, we aim to assess the feasibility of employing the automatic differentiation tool TAPENADE for this purpose on a large Fortran codebase that is the result of many years of continuous development. As a starting point we will describe the special structure of finite element codes and the implications that this code design carries for an efficient calculation of the Jacobian matrix. We will also propose a first approach towards improving the efficiency of such a method. Finally, we will present a functioning method for the automatic implementation of the Jacobian calculation in a finite element software, but will also point out important shortcomings that will have to be addressed in the future. (C) 2016 Elsevier Ltd. All rights reserved.
机构:
Ctr Sci Res SASA, Kragujevac 34000, Serbia
Univ Kragujevac, Kragujevac, SerbiaCtr Sci Res SASA, Kragujevac 34000, Serbia
Milasinovic, Danko Z.
Ivanovic, Milos R.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Sci Res SASA, Kragujevac 34000, Serbia
Univ Kragujevac, Kragujevac, SerbiaCtr Sci Res SASA, Kragujevac 34000, Serbia
Ivanovic, Milos R.
Filipovic, Nenad D.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Sci Res SASA, Kragujevac 34000, Serbia
Univ Kragujevac, Kragujevac, Serbia
Fac Mech Engn, Kragujevac, Serbia
Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USACtr Sci Res SASA, Kragujevac 34000, Serbia
Filipovic, Nenad D.
Kojic, Milos R.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Sci Res SASA, Kragujevac 34000, Serbia
Univ Kragujevac, Kragujevac, Serbia
Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USACtr Sci Res SASA, Kragujevac 34000, Serbia