Data-Driven Affinely Adjustable Distributionally Robust Unit Commitment

被引:118
|
作者
Duan, Chao [1 ,2 ]
Jiang, Lin [2 ]
Fang, Wanliang [1 ]
Liu, Jun [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Elect Engn, Xian 710049, Shaanxi, Peoples R China
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Ambiguity; chance constraints; distributionally robust optimization; uncertainty; unit commitment; OPTIMAL POWER-FLOW; STOCHASTIC OPTIMIZATION; WIND POWER; ENERGY; CONSTRAINTS;
D O I
10.1109/TPWRS.2017.2741506
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a data-driven affinely adjustable distributionally robust method for unit commitment considering uncertain load and renewable generation forecasting errors. The proposed formulation minimizes expected total operation costs, including the costs of generation, reserve, wind curtailment, and load shedding, while guaranteeing the system security. Without any presumption about the probability distribution of the uncertainties, the proposed method constructs an ambiguity set of distributions using historical data and immunizes the operation strategies against the worst case distribution in the ambiguity set. The more historical data is available, the smaller the ambiguity set is and the less conservative the solution is. The formulation is finally cast into a mixed integer linear programming whose scale remains unchanged as the amount of historical data increases. Numerical results and Monte Carlo simulations on the 118- and 1888-bus systems demonstrate the favorable features of the proposed method.
引用
收藏
页码:1385 / 1398
页数:14
相关论文
共 50 条
  • [11] A New Affinely Adjustable Robust Model for Security Constrained Unit Commitment under Uncertainty
    Sierra-Aguilar, Juan Esteban
    Marin-Cano, Cristian Camilo
    Lopez-Lezama, Jesus M.
    Jaramillo-Duque, Alvaro
    Villegas, Juan G.
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [12] Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response
    Qing, Ke
    Huang, Qi
    Du, Yuefang
    Jiang, Lin
    Bamisile, Olusola
    Hu, Weihao
    ENERGY, 2023, 262
  • [13] A distributionally robust data-driven framework to reliability analysis
    Hammond, James
    Crespo, Luis G.
    Montomoli, Francesco
    STRUCTURAL SAFETY, 2024, 111
  • [14] Data-driven Distributionally Robust Optimization for Edge Intelligence
    Zhang, Zhaofeng
    Lin, Sen
    Dedeoglu, Mehmet
    Ding, Kemi
    Zhang, Junshan
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 2619 - 2628
  • [15] Data-driven distributionally robust LQR with multiplicative noise
    Coppens, Peter
    Schuurmans, Mathijs
    Patrinos, Panagiotis
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 521 - 530
  • [16] Data-driven distributionally robust capacitated facility location problem
    Saif, Ahmed
    Delage, Erick
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 291 (03) : 995 - 1007
  • [17] Data-Driven Distributionally Robust Optimization for Railway Timetabling Problem
    Liu, Linyu
    Song, Shiji
    Wang, Zhuolin
    Zhang, Yuli
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (01) : 810 - 826
  • [18] Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization
    Ning, Chao
    Ma, Xutao
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3597 - 3602
  • [19] Data-driven distributionally robust risk parity portfolio optimization
    Costa, Giorgio
    Kwon, Roy H.
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (05): : 1876 - 1911
  • [20] Data-Driven Distributionally Robust MPC for Constrained Stochastic Systems
    Coppens, Peter
    Patrinos, Panagiotis
    IEEE Control Systems Letters, 2022, 6 : 1274 - 1279